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Executive Summary 

Artificial Intelligence (AI), including Machine Learning (ML), offers the opportunity to make transportation systems safer, and more 

equitable, reliable, accessible, secure, efficient, and resilient. However, several challenges exist that could impede the successful 

adoption of AI for Intelligent Transportation Systems (ITS) and the potential realization of these benefits. These challenges include, 

but are not limited to, issues surrounding data, supporting technology, bias, security, privacy, ethics and equity, generalization, model 

drift, explainability, liability, talent/workforce availability, and stakeholder perception. While these challenges to AI adoption and 

implementation cut across domains, this report focuses on their implications for ITS as well as insights that agencies could consider 

in helping to mitigate them. Table 1 summarizes these 12 challenges, their implications for ITS, and insights and lessons learned that 

agencies could consider. 
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Table 1. Summary of Challenges to AI Adoption, Implications for ITS, and Lessons Learned 

ID Challenge and Description Implications for ITS Insights and Lessons Learned 

1 Data 

Lack of sufficient, high-quality, 

and relevant data 

• Collecting sufficient high-quality data can be

difficult when infrastructure-based sensors are

sparse, or funding is limited. Labeling large sets

of unstructured data can be costly. Data fusion

from diverse sources can be complicated and

costly.

• Data manipulation and feature extraction can

have major implications on the performance

and capabilities of AI systems because they can

allow the AI system to learn from more

generalizable data points or capture complex

relationships between the features.

• AI systems can learn undesired behaviors and

relationships in the training phase if the data

are not thoughtfully prepared.

• A lack of standards for data access and sharing

are an impediment to accelerating the maturity

of AI-enabled ITS.

• Collection of massive datasets presents

challenges related to supporting technology

(see #2) and data privacy (see #5).

• Using/sharing data with sufficient

metadata and documentation so that

practitioners are aware of the

nuances, potential pitfalls, and

recommended uses of the data.

• Developing a comprehensive data

management strategy to ensure

organizational alignment in data

governance.

• Reusing data as much as possible to

reduce duplicated effort for similar

use cases. However, just because

certain data are available does not

mean that they will be useful for the

task at hand, so consider use case

relevance.

• Considering synthetic, imputed, and

human/AI collaborative approaches

to creating data and performing

extensive validation.

• Availability does not imply data

relevancy or usefulness.
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ID Challenge and Description Implications for ITS Insights and Lessons Learned 

2 Supporting Technology 

Inability of legacy systems to 

support the addition and 

integration of new AI-based 

functionalities, due to software-

hardware integration issues, 

limited data storage capacities, 

and restricted computational 

power of legacy systems 

• Infrastructure costs associated with AI systems

can be high; lack of available funding may

require prioritization of projects.

• Lack of documentation for legacy systems can

make them less adaptable at supporting new

equipment.

• Unlocking the full potential of AI-enabled ITS

applications requires resolving integration and

compatibility issues, as well as data storage

and computational power problems.

• ITS equipment requires continuous power

supply which can be costly and challenging

specifically for rural AI for ITS applications.

• AI/ML algorithms have carbon costs associated

with them.

• Launching pilot deployments to

uncover potential barriers and

demonstrate benefits

• Leveraging existing ITS infrastructure

where applicable to minimize costs

• Using cloud computing to increase

the computational speed

• Using edge computing to overcome

bandwidth and latency issues

• Leveraging clustered computing to

augment processing power

• Adopting systems engineering best

practices to build more adaptable and

resilient systems

• Building sustainable AI solutions to

reduce negative environment impacts
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ID Challenge and Description Implications for ITS Insights and Lessons Learned 

3 Bias 

When AI systems lead to unfair 

and unequitable outcomes due 

to underrepresentation of 

subpopulations, or due to 

human or systemic/institutional 

biases 

 

• Groups of roadways users may be 

underrepresented in training datasets used for 

machine vision applications (e.g., for TSMO 

applications such as Smart Intersections). 

• Data are sparse for work zones despite being 

one of the most vulnerable areas of roadways 

for fatalities. 

• When data are collected from users of mobile 

applications for transportation, the samples may 

be biased. 

• Data may be biased due to unequitable 

distribution of sensors along roadways. 

• Adopting a socio-technical systems 

approach to mitigating bias in AI 

systems 

• Bringing together diverse teams for AI 

systems development 

• The most accurate model is not 

always the one with the least harmful 

impact 

• Collecting sufficient data to measure 

error statistics across demographic 

groups 

• Choosing fairness metrics that reflect 

the values of the organization and the 

groups for whom the AI system has 

the highest risk of harm 

• Monitoring bias mitigation is an 

ongoing process that extends 

throughout the AI system lifecycle 
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ID Challenge and Description Implications for ITS Insights and Lessons Learned 

4 Security 

When an attack, via 

cyberspace, targeting an 

enterprise’s use of cyberspace 

for the purpose of disrupting, 

disabling, destroying, or 

maliciously controlling a 

computing 

environment/infrastructure; or 

destroying the integrity of the 

data or stealing controlled 

information (NIST, 2022) 

• Insufficient attention has been paid to the ways

in which AI can be used maliciously.

• Malicious entities could compromise the

integrity of the decision-making process (e.g.,

data poisoning, model evasion).

• Hacking cyber-physical infrastructure (e.g.,

DMS, Colonial Gas Pipeline) poses a threat.

• Connected vehicle adoption may increase

vulnerabilities.

• Automated vehicles, which rely heavily on AI

algorithms, make safety-impacting driving

decisions.

• Agencies and the public may mistrust AI

applications.

• Understanding potential security

threats from misuse of AI-based

applications to better forecast,

prevent and mitigate the threats

• Following cybersecurity best

practices

• Collaboration among various

stakeholders to identify transportation

cybersecurity best practices

• Developing workforce and domain

expertise to curtail security issues

• Strengthening the security of AI

systems by addressing vulnerabilities

• Utilizing intrusion and misbehavior

detection systems to enhance safety

of AI-based ITS systems

• Retraining ML models at regular

intervals to retain the quality of ML

predictions

• Securing physical infrastructure to

block potential physical intrusion into

the system
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ID Challenge and Description Implications for ITS Insights and Lessons Learned 

5 Privacy 

Inability of an AI system to 

protect individual privacy, 

including personally identifiable 

information (PII) and other 

sensitive information 

• New AI applications in ITS could heighten 

identity, behavioral, and location privacy 

concerns. 

• Privacy leakage could lead to liability issues for 

the agency and reduced trust from system 

users. 

• Agencies may have to consider tradeoffs 

between privacy and utility in data. 

• AI applications in ITS that may rely on or 

capture sensitive information, such as 

pedestrian detection, automated license plate 

readers, personalized traveler information, and 

driver monitoring, could pose higher privacy 

risks.  

• Obscuring/encrypting sensitive data 

• Collecting non-sensitive data 

• Using synthetic data 

• Applying differential privacy 

• Using a distributed protection 

technique 

• Using edge computing to limit PII 

collection 

• Establishing data sharing techniques 

• Developing privacy policies 
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ID Challenge and Description Implications for ITS Insights and Lessons Learned 

6 Ethics and Equity 

When AI applications, whether 

intentionally or unintentionally, 

profile and discriminate against 

individuals/populations based 

on unfair or unclear criteria or 

lead to unethical or inequitable 

outcomes 

• AI-enabled ITS systems can inform, or even

make, decisions that greatly impact human

lives. For example, Automated Vehicles (AVs)

could encounter major ethical dilemmas in their

driving decision making.

• Disadvantaged populations could be unfairly

discriminated against via AI-enabled ITS,

negatively impacting equity. For example,

discrimination could occur in infrastructure and

asset management decisions or in language

processing.

• Inequitable outcomes could occur from

competing objectives or biased data collection.

• Seemingly negligible development choices,

such as spatial resolution or sensor placement,

could lead to unintentional consequences.

• Creating AI systems with ethics,

equity, and transparency at the

forefront

• Translating ethical frameworks into

engineering

• Supporting workforce training and

education to meet future AI needs

• Including diverse stakeholders

throughout AI development

• Promoting ethical, trustworthy AI use

and development

• Applying guidelines to promote

responsible AI

• Documenting processes, success

metrics, and expectations

• Including a human-in-the-loop for

critical decisions
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ID Challenge and Description Implications for ITS Insights and Lessons Learned 

7 Generalization 

When a trained ML model does 

not adapt well to unseen data, it 

may have underfit or overfit its 

training data, which could lead 

to poor performance   

• Vendors may promote their AI solutions as

being able to work anywhere, but AI solutions

are not necessarily designed to work

everywhere.

• Since non-recurring conditions are far less

common than recurring conditions, they present

a challenge in terms of having enough data to

train an ML model to detect and classify them

correctly.

• ML models require large quantities of

representative data to generalize well, but real-

world data can be expensive to acquire, and

simulated data may not be fully representative.

• Having representative data for

training

• Making the training data more robust

• Handling edge cases

• Limiting overfitting

• Combining ML techniques or models

• Using model testbeds

• Re-training for new locations

• Considering transfer learning

• Developing and using standards to

enable interoperability
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ID Challenge and Description Implications for ITS Insights and Lessons Learned 

8 Model Drift 

When a trained model’s input 

data, output data, or 

relationship between the two 

changes over time leading to 

system performance 

degradation 

• Model drift could lead to AI system performance

degradation, which in turn, could reduce ITS

performance and user trust.

• Sensor malfunctions or hardware/software

updates could lead to incorrect predictions if an

AI system has not been trained on these

occurrences.

• If the input data in an operational setting starts

to drift away from the data used to train the

model, the performance of the AI system might

start to degrade. For example, the introduction

of a new ridesharing service that was not

captured in the training data could lead to an AI-

enabled traveler information system no longer

offering the most relevant options to travelers.

• Policy changes that impact the target variable

could lead to concept drift. For example, if a

freeway agency changes one of its lanes from

an HOV-2 to an HOV-3, an AI-based vehicle

occupancy detection and tolling enforcement

application would need to be updated to learn

this change or else it could incorrectly enforce

toll rates.

• Having a plan in place for model drift

assessment and mitigation

• Establishing appropriate ranges of

data and model drift

• Regularly monitoring and improving

the system

• Retraining the model

• Considering online learning
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ID Challenge and Description Implications for ITS Insights and Lessons Learned 

9 Explainability 

Inability of an AI system’s 

process and decisions to be 

understood by humans 

• Explainability is especially important for safety-

critical and other high-stakes decisions with

greater risk and liability concerns for the

agency.

• The level of explanation required for an AI-

enabled decision support system depends on

the task at hand and level of supervision from

the ITS decision maker.

• If a vendor’s AI solution is not transparent and

explainable, this could reduce agency and user

trust in the overall procured system.

• Even simple explanations for AV decisions

could improve driver and pedestrian interaction

with and trust of the AV.

• Understanding potential tradeoffs

between interpretability and

performance

• Balancing explainability with security

and privacy

• Improving transparency through

documentation

• Using interpretable models

• Engineering interpretable features

• Outputting multiple performance

metrics

• Visualizing results

• Exploring post-hoc explainable AI

(XAI) methods

• Using explainable AI (XAI) analysis

for validation of model strategies and

to improve trust in AI outcomes

• Considering non-AI alternatives
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ID Challenge and Description Implications for ITS Insights and Lessons Learned 

10 Liability 

Lack of clear definition of who is 

liable when a vehicle, device, 

equipment, or system that uses 

AI is involved in a crash, is 

hacked, or produces erroneous 

results 

• If the AI application fails due to bias in the data, 

it is currently unclear whether the liable party for 

the failure is the application developer or the 

data provider  

• Liability is unclear when a vehicle, device, 

equipment, or system that is powered by an AI 

application is involved in a crash or results in 

fatalities. 

• Lack of clarity of safety expectations may 

regarding the damages that results from 

cybersecurity breaches in an AI product. 

• If an AI-enabled application has poor 

performance resulting in significant productivity 

losses, it is unclear who should be held 

accountable. 

• Partnering closely with agency risk 

management teams to consider legal 

and compliance issues from the 

perspective of organizational experts.  

• Assessing legal restrictions for the 

data to establish contracts and 

agreements in ways the data should 

be collected and used. 

• Assessing legal restrictions for the AI 

algorithm to establish contracts and 

agreements on all aspects of 

algorithm use and ownership. 

• Identifying possible risks throughout 

the AI pipeline, including considering 

downstream uses of AI system 

outputs. 

• Maintaining human accountability by 

assigning responsibility for AI system 

outcomes on specific individuals and 

organizations. 
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ID Challenge and Description Implications for ITS Insights and Lessons Learned 

11 Talent/Workforce Availability 

When there is lack of 

talent/expertise in building 

trustworthy, ethical AI 

algorithms, or integrating, 

operating, and maintaining real-

world AI-based systems 

• Workforce talent and education are key 

bottlenecks to successful deployment and 

integration of AI systems into the operations of 

government agencies. 

• Domain experts in the transportation industry 

often do not have sufficient AI knowledge to 

work alongside data scientists in building 

models that are relevant and operationally 

useful. 

• Due to budget limitations, agencies have limited 

staff to operate and maintain AI-based systems. 

Therefore, balancing hiring decisions between 

ML/AI expertise and domain expertise can be a 

challenge. 

• Improving diversity in the workforce, 

and balancing AI talent and domain 

expertise to overcome challenges 

related to limited resources 

• Collaborating with partners for AI 

expertise 

• Providing client training to make 

deployment smoother, leading not 

only to improved technical proficiency 

of personnel but also buy-in for AI-

enabled systems 

• Conducting periodic education and 

training for current staff, new hires, 

and domain experts, so they can 

keep up with advances in AI 



Executive Summary 

Joint Program Office 

U.S. Department of Transportation, Research and Innovative Technology Administration 

AI for ITS Challenges and Lessons Learned Report – Final |  xv 

ID Challenge and Description Implications for ITS Insights and Lessons Learned 

12 Stakeholder Perception 

When stakeholders are 

skeptical or mistrustful of AI 

systems or have exaggerated 

expectations of AI systems’ 

capabilities 

• If stakeholders lack a clear understanding of the 

capabilities of AI, this can lead to skepticism 

and mistrust or to blind belief in AI as a solution 

for all problems, both of which could impede the 

successful implementation of AI.  

• Due to perceived high costs and risk aversion, 

agencies may prefer to deploy traditional ITS 

systems rather than AI-based systems. 

• Ethics, liability, and privacy issues could also 

affect stakeholder perception of AI. Agencies 

may have to contend with these institutional 

challenges when implementing AI solutions. 

• Conducting stakeholder analysis to 

identify stakeholders and their needs 

• Building trustworthy and ethical AI 

systems 

• Engaging with the user community 

early and often to gain buy-in and 

understand stakeholder needs 

• Demonstrating the value of AI to keep 

stakeholders on board with the 

project 

• Exchanging information with other 

deployers to share insights, lessons 

learned, and preliminary results  

• Ensuring leadership buy-in of AI 

techniques for initial and continued 

support 

• Setting stakeholder expectations, 

including on the implementation 

timeline  

• Promoting public understanding of AI 

to clarify what it is and how it could 

play a role  
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Key Takeaways 
 

Overarching key takeaways are summarized below. 

• The twelve challenges for AI adoption and successful implementation are 

not unique to ITS. They are broad technical and institutional challenges that 

impact a wide variety of sectors. Many of the insights and lessons learned in this 

report are gleaned from other sectors and could potentially be applied to ITS.   

• There may be tradeoffs between addressing different challenges. For 

example, greater explainability could provide more information for malicious 

actors to manipulate, potentially breaching security and/or privacy. Adding robust, 

large scale data sources may boost AI performance but could be costly to store 

and implement.  

• Addressing these challenges is an ongoing exercise. These challenges are 

dynamic and, like AI itself, will evolve over time. For example, cybersecurity 

concerns today may look different than cybersecurity concerns next year as 

malicious actors find new ways to hack into systems. Additionally, stakeholder 

buy-in is important not only at the onset of a project but also throughout the 

project to support its continued success. The deployment of new AI techniques 

may require new staff expertise. Overall, challenges and risks are dynamic and 

addressing them is an ongoing exercise. 

• Maintaining a human-in-the-loop is helpful in identifying and mitigating 

these challenges. Ongoing human oversight of AI/ML applications in ITS can 

help in identifying and mitigating potential issues, particularly those that the 

machine may not catch and those that may require making tradeoffs in how they 

are addressed. Having both domain and AI/ML expertise on staff is useful for not 

only the initial implementation but for ongoing operations and maintenance of the 

system and its AI/ML applications.
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1 Introduction 

1.1 Background 

The U.S. Department of Transportation (USDOT) has long been a leader in research, 

development, and evaluation of technologies for transportation and a strong supporter of 

the adoption and use of Intelligent Transportation Systems (ITS). ITS includes multiple 

components of transportation infrastructure, vehicles, back offices, services, and other 

tools and mechanisms that serve all transportation users, including underserved 

communities and groups, private-sector vendors of technology equipment and 

applications, and operators and implementers of ITS whether privately or publicly owned 

(e.g., state, local, and tribal governments). ITS can improve the capabilities of the 

transportation system by integrating advanced information and communications-based 

technologies (ICT) into transportation infrastructure and vehicles.  

The ITS Joint Program Office (JPO)’s mission, according to Strategic Plan 2020-2025 

(Chan-Edmiston et al., 2020), is to lead collaborative and innovative research, 

development, and pilot deployment, and facilitate implementation of ITS to improve the 

safety and mobility of people and goods. In line with this mission, the ITS JPO and its 

modal partners have been leading the way in tackling fundamental problems in 

transportation by leveraging emerging technologies and strategies, including spectrum 

utilization, cybersecurity, computer processing, connected and automated vehicles, 

shared mobility services, accessible transportation technologies, and artificial 

intelligence (AI). 

USDOT recognizes the promise AI offers for achieving considerable benefits in safety, 

mobility, equity, efficiency, accessibility, productivity, resilience, and reduction of 

individual and societal costs, emissions, and other negative environmental impacts. In 

the last few years, explorations into AI have grown tremendously within the USDOT 

(Thompson, 2019). Some of the USDOT’s modal administrations, including the Federal 

Highway Administration (FHWA), Federal Railroad Administration (FRA), and the Federal 

Aviation Administration (FAA), have been at the forefront of adopting AI solutions for 

transportation mission delivery. AI-enabled applications are being explored and 

implemented for video analytics, safety analysis, and data fusion, among others. For 

example, the FHWA’s Exploratory Advanced Research Program supports research 

projects on AI for making sense of big data and using video analytics to help analyze 

driver behavior (FHWA EAR Program, 2022). Additionally, the FHWA’s Traffic Analysis 

Tools (TAT) Program is investigating the use of AI for developing prediction techniques 

and evaluation tools (FHWA Office of Operations, 2022). The FHWA’s Advanced 

Transportation and Congestion Management Technologies Deployment (ATCMTD) 
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Program has awarded 48 grants (so far) to develop and deploy cutting-edge 

technologies, including AI, to improve safety and mobility (FHWA, 2020). The FRA is 

developing a suite of technologies for predictive analytics and intruder detection using AI 

and unmanned aircraft systems (UAS) (Baillargeon, 2019). Other agencies, such as the 

Federal Transit Administration (FTA), Federal Motor Carrier Safety Administration 

(FMCSA), and the Pipeline and Hazardous Materials Safety Administration (PHMSA), 

are exploring the promise that AI has to offer in citizen-facing services. 

In 2019, the ITS JPO initiated the AI for ITS Program with the vision to “advance next 

generation transportation systems and services by leveraging trustworthy, ethical AI 

(including machine learning) for safer, more efficient, and accessible movement of 

people and goods” (Walker, 2021). As part of this effort, the ITS JPO developed the 

following definition of AI in the context of ITS: Artificial Intelligence (AI) refers to 

processes that make it possible for systems to augment routine human tasks or enable 

new capabilities that humans cannot perform. AI enables systems to: (1) sense and 

perceive the environment, (2) reason and analyze information, (3) learn from experience 

and adapt to new situations, potentially without human interaction, and (4) make 

decisions, communicate, and take actions. 

Over the last few years, the AI for ITS Program conducted a series of research and 

market engagement to assess the potential of AI for ITS. A comprehensive review of 

literature was conducted to understand how AI is being leveraged to address ITS needs, 

specifically to improve transportation system and users’ safety, mobility, accessibility, 

productivity, efficiency, and environmental impacts (Vasudevan, Townsend, et al., 2020). 

This investigation focused on AI-enabled ITS applications that the USDOT and its state 

and local partners might apply to the planning, operation, and maintenance of the 

multimodal surface transportation system, as well as applications developed by the 

private sector that USDOT may have a role in enabling.  

Building on this preliminary investigation into promising applications of AI for ITS, the ITS 

JPO decided to conduct market research to get feedback from public sector agencies, 

industry, research laboratories, academia, and other stakeholders on deployment-ready 

applications that leverage AI to address ITS needs, existing capabilities in developing 

and deploying AI-enabled ITS applications, and USDOT role and investment areas to 

facilitate next generation ITS leveraging AI.  

A variety of challenges to AI adoption in ITS have been surfaced through the review of 

literature, interviews with subject matter experts, strategic sessions with USDOT modal 

experts, AI for ITS Program webinars and market research, and other AI-related 

conferences, webinars, and workshops organized by agencies such as the National 

Institute of Standards and Technology (NIST), SAE, American Society of Civil Engineers 

(ASCE), and USDOT’s University Transportation Center (UTC) Program. Some of these 

challenges are technical while others are more organizational, ranging from data 

requirements, bias, and privacy concerns to ethics, liability, and stakeholder perception. 

While these challenges to AI implementation cut across domains, this report attempts to 
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focus on their applicability to ITS and what agencies could consider doing to help 

mitigate them.   

1.2 Purpose of this Report 

The purpose of this report is to provide USDOT and transportation agency staff with 

awareness of potential challenges to the use of AI for ITS as well as potential solutions, 

insights, and lessons learned to help overcome them. Recognizing that these challenges 

are broad, this report does not attempt to be comprehensive in its discussion. Instead, 

this report attempts to highlight pertinent available information with a focus on insights 

that could be most relevant to ITS and the transportation agency staff.  

1.3 Glossary 

This report assumes some foundational knowledge of AI and ML concepts, and 

therefore, uses a variety of common terms throughout. Practical definitions of these 

terms are summarized in the glossary in Table 2.  

Table 2. Glossary of Terms Used in This Report Related to AI/ML 

Term  Definition 

Adversarial 

Machine Learning 

Using malicious inputs designed to fool machine learning models. 

Technique to find a perturbation that changes the prediction of a 

machine learning model (Papers with Code - The Latest in Machine 

Learning, 2022). 

Adversarial Machine Learning is a collection of techniques to train 

neural networks on how to spot intentionally misleading data or 

behaviors. This differs from the standard classification problem in 

machine learning, since the goal is not just to spot “bad” inputs, but 

preemptively locate vulnerabilities and craft more flexible learning 

algorithms (DeepAI, 2019). 

Black box Models When users are able to provide inputs and view outputs of the 

target ML model but are unaware of the architecture/structure of 

model. 

Classification  

 

ML model that distinguishes among two or more discrete classes 

(Google, 2021). 

Clustered 

computing 

A distributed computing concept where multiple machines on the 

same network act as a single entity, providing increased 

computational power (Baker, 2000). 
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Term  Definition 

Cross validation Testing the target ML model with a dataset unknown to it (dataset 

not used to train model) (Google, 2021). 

Cyberattack An attack, via cyberspace, targeting an enterprise’s use of 

cyberspace for the purpose of disrupting, disabling, destroying, or 

maliciously controlling a computing environment/infrastructure; or 

destroying the integrity of the data or stealing controlled information 

(NIST Glossary, 2022). 

Cybersecurity The process of protecting information by preventing, detecting, and 

responding to attacks (NIST Glossary, 2022). 

Data 

augmentation 

Artificially boosting the range and number of training examples by 

transforming existing examples to create additional examples 

(Google, 2021). 

Data poisoning Adversarial attack that tries to manipulate the training dataset in 

order to control the prediction behavior of a trained model such that 

the model will label malicious examples into a desired classes 

(e.g., labeling spam e-mails as safe) (Papers with Code - The 

Latest in Machine Learning, 2022). 

Edge computing A distributed computing concept where servers are placed closer to 

devices to reduce latency in communication between devices 

(Arabi, 2020). 

Feature 

engineering 

The process of determining which features might be useful in 

training an ML model, and then converting raw data from log files 

and other sources into said features (Google, 2021). 

Feature 

extraction 

Retrieving intermediate feature representations calculated by an 

unsupervised or pretrained ML model for use in another model as 

input (Google, 2021). 

Features Also referred to as “predictors” (Google, 2021). 

Hardware 

acceleration 

The process of offloading data-intensive tasks and functions to 

hardware (GPUs, FPGAs, ASICs) to speed up computational 

performance and timing (Zhao et al., 2017).  

Human-in-the-

loop 

Active human oversight of the AI system, “with the human retaining 

full control and the AI only providing recommendations or input” 

(GAO, 2021). 

https://developers.google.com/machine-learning/glossary#training
https://developers.google.com/machine-learning/glossary#example
https://developers.google.com/machine-learning/glossary#unsupervised_machine_learning
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Term  Definition 

Human-on-the-

loop 

Human supervision in which “the human is in a monitoring or 

supervisory role, with the ability to take over control when the AI 

model encounters unexpected or undesirable events” (GAO, 2021). 

Human-out-of-

the-loop 

The lack of human supervision of the execution of decisions, as in 

the AI system has full control without the option of human override 

(GAO, 2021). 

Imbalanced 

dataset 

When certain conditions, subpopulations, or classes are 

overrepresented in the data set, while others are 

underrepresented. 

Inference Process of making predictions by applying the trained model to 

unlabeled examples.  

Labels Also referred to as “ground truths” (Google, 2021). 

Localized models ML models trained to the specific characteristics of a network. 

Machine Learning 

(ML) 

A broad subfield of AI in which computers learn from data, discover 

patterns and make decisions without human intervention. The ML 

field is broadly categorized into supervised, semi-supervised, 

unsupervised and reinforcement learning (Vasudevan et al., 2020). 

Model evasion network is fed an “adversarial example” — a carefully perturbed 

input that looks and feels the same as its untampered copy to a 

human — but that completely throws off the classifier (Ilmoi, 2019). 

Model overfitting Creating a model that matches the training data so closely that the 

model fails to make correct predictions on new data (Google, 

2021). 

Natural Language 

Processing (NLP) 

An AI technique for parsing, processing, and analyzing natural 

human language (Google, 2021). 

Parameter A variable of a model that the machine learning system trains on its 

own 

Pipeline The infrastructure surrounding a machine learning algorithm. A 

pipeline includes gathering the data, using the data to create 

training data files, training one or more models, and exporting the 

models to production (Google, 2021). 

Predictions The output of a machine learning model, e.g., confidence scores 

for classifiers (Google, 2021). 
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Term  Definition 

Ransomware Type of malicious attack where attackers encrypt an organization’s 

data and demand payment to restore access (NIST, 2022). 

Regularization The penalty on a model's complexity. Regularization helps prevent 

overfitting. Different kinds of regularization include (Google, 2021): 

• L1 regularization 

• L2 regularization 

• Dropout regularization  

Security Protection against intentional subversion or forced failure. A 

composite of four attributes – confidentiality, integrity, availability, 

and accountability – plus aspects of a fifth, usability, all of which 

have the related issue of their assurance (NIST, 2022). 

Spear phishing An attempt to acquire sensitive information or access to a computer 

system by sending counterfeit messages that appear to be 

legitimate (Counterintelligence_Tips_Spearphishing, n.d.) 

Spyware Software that is secretly or surreptitiously installed into an 

information system to gather information on individuals or 

organizations without their knowledge (NIST, 2022). 

Supervised 

learning 

Training of a model on datapoints that include labels (Google, 

2021). 

Testing data set Also referred to as “validation data set” depending on the context 

(Google, 2021) 

Training data set The set of examples used to fit the target model and depends on 

the learning method (Google, 2021) 

Unsupervised 

learning 

Training of a model on datapoints that do not include labels 

(Google, 2021) 

White box Models The structure and parameters of the model are known to all users 

that have access to the model  

1.4 Organization of this Report  

This document is organized into the following chapters: 

• Chapter 2 Challenges to Adoption for ITS – describes 12 challenges to AI 

adoption and successful implementation in ITS, including a summary table, 
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description, implications for ITS, and insights and lessons learned for each 

challenge. The tables are meant to serve as convenient summaries for each 

challenge, particularly for USDOT and agency decision makers seeking quick, 

high-level views of the material. All 12 individual summary tables are combined in 

the Executive Summary in Table 1.  

• Chapter 3 Key Takeaways – summarizes high-level key takeaways across all 12 

challenges.  

• References – includes a list of references in this report ordered by author-date 

with links where possible. 
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2 Challenges to AI Adoption for ITS 

AI offers the promise to improve the safety, mobility, accessibility, equity, productivity, 

and efficiency of transportation systems. AI has many practical applications in the 

transportation domain that could promote these goals. However, there are significant 

challenges to the adoption and successful implementation of AI for ITS. Given below are 

cross-cutting challenges that agencies could face in implementing AI-enabled solutions 

to address problems seen on their transportation networks, corridors, and systems. 

Figure 1 illustrates the 12 major challenges summarized in this chapter.  

This chapter describes these 12 challenges, and corresponding key implications for ITS, 

and potential solutions, insights, and lessons learned to help overcome them. 

Figure 1. Challenges to AI Adoption for ITS 
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2.1 Data 

Table 3. Summary of the Data Challenge and Potential Strategies to Address It 

Summary of Data 

What is it? Lack of sufficient, high-quality, and relevant data 

Why does it 

matter for ITS? 

• Collecting sufficient high-quality data can be difficult when 

infrastructure-based sensors are sparse, or funding is limited. 

Labeling large sets of unstructured data can be costly. Data 

fusion from diverse sources can be complicated and costly. 

• Data manipulation and feature extraction can have major 

implications on the performance and capabilities of AI systems 

because they can allow the AI system to learn from more 

generalizable data points or capture complex relationships 

between the features. 

• AI systems can learn undesired behaviors and relationships in 

the training phase if the data are not thoughtfully prepared.  

• A lack of standards for data access and sharing are an 

impediment to accelerating the maturity of AI-enabled ITS. 

• Collection of massive datasets presents challenges related to 

supporting technology and data privacy. 

How can it be 

addressed? 

• Using/sharing data with sufficient metadata and documentation 

so that practitioners are aware of the nuances, potential pitfalls, 

and recommended uses of the data. 

• Developing a comprehensive data management strategy to 

ensure organizational alignment in data governance. 

• Reusing data as much as possible to reduce duplicated effort 

for similar use cases. However, just because certain data are 

available does not mean that they will be useful for the task at 

hand, so consider use case relevance. 

• Considering synthetic, imputed, and human/AI collaborative 

approaches to creating data and performing extensive 

validation. 

• Availability does not imply data relevancy or usefulness. 

Description of Challenge 

Most modern AI algorithms ingest large amounts of data to make inferences or 

predictions. AI algorithms that are trained on data fall under the category of machine 

learning (ML). These ML systems begin with data and then infer rules or decision 

procedures to predict outcomes (GAO, 2021). The most powerful category of ML 

algorithm in the modern era has been artificial neural networks, which are inspired by 

functions of the human brain. They have surpassed other ML algorithms in tasks such as 

machine vision and object detection. Typically, neural networks, especially deep (many 
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layers of neurons) neural networks, require huge amounts of training data to sufficiently 

tune the many parameters of these large models. In speaking to the ITS JPO’s AI for ITS 

Program about their ATCMTD deployment, the Delaware DOT mentioned that a big 

issue they are finding is the quantity of useable data. For example, they said the 

penetration rate of equipped vehicles relative to the total number of vehicles on the 

roadway is low from one of their data providers.  

Lack of sufficient high-quality data is a common barrier encountered when 

deploying AI systems. It would be helpful for agencies to have processes for obtaining, 

storing, and validating high-quality data to ensure that their AI systems produce 

consistent and accurate results. Lack of quality control in the data collection process can 

lead to systems being trained on poor quality data that does not reflect real world 

deployment use cases. This can appear in many forms. Incorporation bias, i.e., bias 

introduced at the point a data set is labeled, means that data may be systematically 

labeled incorrectly or inconsistently based on the viewpoints of the human who labeled 

the dataset (Heaven, 2021). Another quality control concern is that if data are spliced 

together sloppily from multiple sources, they might contain duplicates. This can introduce 

two possible problematic outcomes. If the duplicates appear only in the training data, the 

model will incorrectly over represent that data point. If the duplicate appears in both the 

training and the test data, then the model will be evaluated on the same data that was 

used for training, leading to falsely over-optimistic model performance (Heaven, 2021).  

Sparsity of labeled data can be a limiting factor. Many AI systems are built for 

“supervised learning” tasks – where the system trains by associating feature variables 

(inputs) with labels (outputs), and then attempts to predict the labels of new unseen data 

based on the features that are fed in. Labeling datasets is often a costly and time-

consuming activity. Another issue pertaining to the data is not having a diversified and 

appropriately balanced data which can lead to model bias and discrimination.    

If sufficient documentation about the origins, nuances, and metadata of datasets 

does not accompany shared data, practitioners may incorrectly interpret what the 

variables are measuring. When data are shared without accompanying supporting 

documentation, practitioners often make incorrect assumptions about what the data are 

representing, leading to AI applications not suited to their intended use cases (Machine 

Learning and Artificial Intelligence to Advance Earth System Science: Opportunities and 

Challenges Workshop, 2022). 

Data transformation is an important part of the AI development process. Typically, 

data scientists will transform data to be most suitable to the needs of their use case. This 

often takes the form of feature extraction, the process of determining what features could 

be useful for training a model and converting raw data into said features (Google, 2021). 

These might include data manipulations such as one-hot encodings of categorical data, 

n-gram transformations for natural text data, Z-score transformations for numerical data, 

or merging of different data sets. Decisions about the data during development might 

impact system capabilities and outcomes. Data transformations may also introduce bias, 
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privacy risks, and equity issues, which are addressed in more detail in their respective 

sections of this report. 

AI systems may sometimes learn undesired behaviors and relationships based on 

features of the data that do not help in their intended real world operational 

setting. A recent pertinent example is of a ML screening tool for detecting COVID in 

scans of hospital patients. Because patients who were scanned while lying down, as 

opposed to sitting, were more likely to be seriously ill, the AI learned incorrectly to predict 

COVID risk based on a person’s position (Heaven, 2021). 

Implications for ITS 

Some of the ways that data-related challenges could impact AI-enabled ITS applications 

are summarized below. 

• Sufficient breadth of high-quality, relevant data: AI applications in ITS will 

require a wide spectrum of large amounts of relevant data. For transportation 

agencies, collecting sufficient data can be a major challenge, especially when 

infrastructure-based sensors are sparse or when funding is limited. Sometimes 

practitioners may be tempted to use easily accessible datasets that may not be 

sufficiently relevant or of high enough quality for the intended ITS use case. Staff 

supporting the Delaware DOT’s ATCMTD deployment mentioned in a 

presentation that, in reality, one has to make tradeoffs between data availability 

and data quality (Donaldson et al., 2022). Fusing and integrating data from 

multiple sources and sensors presents another layer of complexity. Depending 

on the ITS application, practitioners may need to incorporate data sets that 

account for socio-demographics, weather, traffic counts, travel time/speed, public 

transportation vehicles and ridership, parking, incidents, etc. (Qian, 2021). Often 

projects start with vast quantities of unstructured and unlabeled data, which can 

be especially challenging to manage. AI practitioners may need to label the data 

or impose structure to make them usable for decision making (Steier, 2021). 

When the data reflect heterogeneity and social inequalities in populations, it is 

also possible that the AI use case leads to disparate and possibly harmful 

outcomes. For more discussion on this topic, see the Bias Section of this report. 

• Making large, disparate data sources useable: Before getting to ML 

development, agencies may have to figure out how to integrate disparate data 

sources. For example, in speaking to the ITS JPO’s AI for ITS Program about 

their ATCMTD deployment (M. Haselkorn et al., interview, April 2022), the 

Washington State DOT (WSDOT) explained how the first wave of their project 

was focused on shared situational awareness across agencies in Seattle. To get 

there, they built an integrated dispatch feed and an inter-agency action log, which 

will serve as the data infrastructure backbone for the next wave of ML algorithm 

development to identify cross-agency incidents. In other cases, agencies may 

already have access to a sufficient quantity of high-quality and relevant data to 
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use for AI but may struggle to make it useful for AI/ML applications. For example, 

in speaking to the ITS JPO’s AI for ITS Program about their ATCMTD deployment 

(E. Kopinski et al., interview, April 2022), the Missouri DOT (MoDOT) mentioned 

that access to data is not always the challenge. Instead, knowing how to use 

available data for AI/ML can be difficult, especially when the data come from a 

variety of different sources.  

• Data manipulation and feature extraction: Given the potential variety among

data sources and formats, ingestion of diverse data into an AI system can be a

major challenge. Typically, a large part of the machine learning pipeline are data

manipulation and feature extraction. This can have a major impact on the

system's performance and capabilities, so practitioners may have to balance

mission goal tradeoffs at this phase (Machine Learning and Artificial Intelligence

to Advance Earth System Science: Opportunities and Challenges Workshop,

2022). For instance, take an application that uses machine vision and satellite

imagery to predict traffic density throughout a city. The AI engineer chooses at

what resolution the data should be fed to the system. Higher resolution data

might help identify small extreme values, like neighborhoods or even blocks that

are very traffic heavy, but they also might introduce more noise and require more

compute resources. Lower resolution data settings might take fewer computing

resources to train the model and represent the system from a high-level view

better but might not detect extreme cases that might be indicative of serious

inequalities, such as neighborhoods situated in areas of abnormally high

congestion. In other cases, an agency may have little control over the data’s

resolution. Staff supporting Delaware DOT’s ATCMTD deployment mentioned in

a presentation that having access to higher resolution data would be helpful

(Donaldson et al., 2022). For example, the TMC receives travel time information

from Bluetooth data at a 5-minute refreshment rate but having that data at a

higher resolution (e.g., every minute) would give them more information to detect

incidents earlier.

• Learning undesired behaviors and relationships: It is possible for AI systems

to learn undesired behaviors and relationships at the training phase, which will

cause it to be suboptimal or even fail in operational settings, based on oversights

by the data scientist. An ITS example might be an AI system trained to identify

highway crashes based on images of crash sites taken by traffic cameras

(Vasudevan, Townsend, Dang, O’Hara, et al., 2020). If some of the images

ingested by the system are from crashes after emergency vehicles have already

arrived, it might learn to predict that a crash has occurred by identifying an

emergency vehicle, a strategy that would be useless in an operational setting.

• Standards for data access and sharing: Recent market research conducted by

the USDOT revealed that ITS practitioners believe that a major role for USDOT is

in supporting the development of standards to ensure that data can be accessed

and shared for execution of AI-enabled ITS applications. Maturity of AI for ITS
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applications may be accelerated if federal and state agencies effectively 

establish ground rules for ownership and exchange of ITS data as well as set 

protocols for secure exchange of data (See Appendix A). In speaking with the ITS 

JPO’s AI for ITS Program about their ATCMTD deployment (G. Donaldson & M. 

Rosica, interview, June 2022), the Delaware DOT (DelDOT) emphasized the 

importance of easily accessing data from providers and being able to use it the 

way they want. A key question that DelDOT’s software development team asks 

data providers is “do you have an API?” because they do not want to have to 

create the API themselves.  

• Data privacy: Collection of massive data sets and advances in technology that 

facilitate correlation of data about individuals may create new risks for agencies 

that collect data. It might be helpful for agencies to improve their efforts to protect 

sensitive data and appropriately limit collection of personally identifiable 

information (PII). Maintaining some data may also be perceived as a potential 

liability for agencies especially if the video feeds or images from traffic cameras 

could be used for criminal/civil proceedings upon request. Strategies for 

anonymization of data may be employed, but they run the risk of reducing the 

usability of the data for building AI-enabled ITS applications. Therefore, in some 

cases there may exist a tradeoff between privacy preservation and usability of 

data. For more information, please see the Privacy Section.  

Insights and Lessons Learned  

Some potential strategies and lessons learned to address data-related challenges are 

summarized below. 

• Using/sharing data with sufficient metadata and documentation: When 

sharing data either through open-source platforms or proprietary agreements, 

agencies and private sector data providers might want to consider including 

sufficient supporting documentation so that users will know how to correctly 

interpret the phenomena being measured. Practitioners similarly might want to 

only utilize data procured outside of the organization if there is enough 

supporting documentation to thoroughly understand the data. Documentation can 

include metadata, data dictionaries, and a description of the data collection 

methodology, including possible issues or statistical biases that may be present 

within the data (Machine Learning and Artificial Intelligence to Advance Earth 

System Science: Opportunities and Challenges Workshop, 2022). Supporting 

data documentation can outline contexts and contents of datasets, including their 

motivation, composition, collection process, and recommended uses (Crawford 

et al., 2021). 

• Supporting data standards development and implementation: The USDOT 

and other agencies could participate in and show leadership in the broader 

industry standards development for data access and sharing. Additionally, the 
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government could have a major role in implementing such standards for 

government-funded projects or government-controlled data. 

• Developing a comprehensive data management strategy: Areas covered by

data management strategies include enterprise data organization, cross-

organization data vision, data governance, metadata management, analytics and

regulatory data, and data quality management (Steier, 2021). High-quality data

management processes aim to successfully account for changes to the

operational environment, possible biases, and the potential for adversarial

exploitation throughout the life of a system. Although automation of data

functions can create more efficient systems, practitioners may want to be aware

of possible tradeoffs between automation and observability (Horneman et al.,

2019).

• Reusing data as much as possible to reduce duplicated effort: Data

wrangling, structuring, and labeling are very costly and time-consuming phases

of the AI development cycle. It is therefore important to make labeled data as

widely available throughout the organization as possible. Reusing data facilitates

teams in rapid-prototype and experimentation with new models. Data

management strategies account for the changing nature of data sources and

formats. Practices such as rigorous data versioning and mapping versions of

datasets to deployed models are recommended (Amershi et al., 2019).

• Considering synthetic, imputed, and human-in-the-loop approaches to

data: Synthetic data are artificially produced data that are intended to mirror the

features of real data (GAO, 2021). There are various reasons an organization

might use synthetic approaches: ethical issues associated with collection of real-

world data, protection of privacy and personally identifiable information, or

because of some dimension underrepresented in a training sample. Extensive

validation is required in high impact/risk use cases because practitioners are

often hesitant to trust the accuracy of synthetic data. Human bias can be

introduced into systems if synthetic data are not thoroughly validated because

the data are synthesized based on a set of rules that reflect the perspective of

the human who created them (Machine Learning and Artificial Intelligence to

Advance Earth System Science: Opportunities and Challenges Workshop, 2022).

Imputed data are substitute values for missing data meant to maintain the

usability of the dataset. There are many imputation methods that carry their own

risks in terms of model performance and behavior, especially in cases when the

missing values show a pattern (i.e., the data are not missing at random). Finally,

a human-in-the-loop approach can create more robust datasets. One USDOT

University Transportation Center research project found that by having an

iterative approach with human experts labeling samples of data for the AI, they

significantly improved their model’s performance compared to baseline models.

The research team has experts label a small seed dataset, after which a transfer
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learning model trains itself to label new data, which is then re-reviewed and 

validated by the experts (Banaei-Kashani & Rens, 2021). 

• Availability does not imply data relevancy or usefulness: Using data simply 

because it is inexpensive or easy to find might not be the best approach for 

building ML models. This often leads to messy and noisy data being used. 

Agencies might have to actively choose to build better data sets, specifically for 

building ML models, rather than creating cheap data that are ungoverned and 

unconsented, which can result in unexpected and highly biased behaviors (NIST, 

2022). For example, researchers from Vanderbilt University supporting the 

Tennessee DOT’s ATCMTD deployment decided to manually annotate 350,000 

3D boxes with 8 points each to track vehicles in video frames when they could 

not find sufficient, high-quality existing 3D data to use (Work, 2022). In another 

example, the Washington State DOT (WSDOT) is developing a Virtual 

Coordination Center (VCC), which is a dashboard platform that combines data in 

near-real time from agencies across Seattle to help users identify incidents 

requiring collaboration from multiple agencies (e.g., large crashes, fires, fatalities, 

crime, etc.), as part of their ATCMTD deployment (Haselkorn & Webster 

Heublein, 2022). While their goal is to eventually train a supervised ML algorithm 

to automatically flag VCC-level incidents, at present, they lack sufficient labeled 

data to develop it. Therefore, they hope to gather enough labeled data from 

users manually flagging VCC-level incidents in the platform during the first year 

of operation to then develop the ML algorithm the next year.  

2.2 Supporting Technology  

Table 4. Summary of the Supporting Technology Challenge and Potential 

Strategies to Address It 

Summary of Supporting Technology 

What is it? Inability of legacy systems to support the addition and integration of 

new AI-based functionalities, due to software-hardware integration 

issues, limited data storage capacities, and restricted 

computational power of legacy systems 
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Summary of Supporting Technology 

Why does it 

matter for ITS? 

• Infrastructure costs associated with AI systems can be high. 

• Lack of available funding may require prioritization of projects. 

• Lack of documentation for legacy systems can make them less 

adaptable at supporting new equipment. 

• Unlocking the full potential of AI-enabled ITS applications 

requires resolving integration and compatibility issues, as well 

as data storage and computational power problems. 

• ITS equipment requires continuous power supply which can be 

costly and challenging specifically for rural AI for ITS 

applications. 

• AI/ML algorithms have carbon costs associated with them. 

How can it be 

addressed? 

• Launching pilot deployments to uncover potential barriers and 

demonstrate benefits 

• Leveraging existing ITS infrastructure where applicable to 

minimize costs 

• Using cloud computing to increase the computational speed  

• Using edge computing to overcome bandwidth and latency 

issues 

• Leveraging clustered computing to augment processing power 

• Adopting systems engineering best practices to build more 

adaptable and resilient systems 

• Building sustainable AI solutions to reduce negative 

environment impacts 

 

Description of Challenge 

Much of existing ITS infrastructure and supporting technology is based on legacy 

systems with custom software developments for specific applications and often do not 

support new technology integration (Systems Engineering Guidebook for ITS, 2009). 

Legacy systems might be composed of various hardware and software components that 

are no longer updated or improved. These legacy systems are unable to process and 

store large quantities of complex data generated by AI applications and have 

compatibility issues with new interfaces and software integration leading to possible 

bandwidth, latency, timeout, storage, and communication issues (Vasudevan, Townsend, 

Dang, et al., 2020; Vasudevan, Townsend, Schweikert, et al., 2020).  

The foundation of modern AI applications lies in the quantity and quality of large datasets 

used to train AI/ML models. Handling, processing, and storing large datasets pose a 

challenge for agencies which often lack resources to warehouse large datasets, thus 

inhibiting the potential of AI applications. Furthermore, AI algorithms can be 

computationally expensive and may require cutting edge technology to process large 

datasets to draw insights. Legacy systems have limited computational power and are 
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one of the potential barriers for AI adoption. Many organizations and agencies continue 

to use legacy systems due to higher capital costs of new systems, prior investments and 

commitments, and challenges/risks posed by migrating to a new system (Problems with 

Legacy Systems, 2021).  

Another challenge with existing systems is adding new functionality, such as combining 

new software with existing hardware. This can lead to compatibility and integration 

issues. Integration is the process of combining hardware and software components, sub-

components, and interfaces. Legacy systems may have been built to serve a specific 

purpose and the existing hardware/software may not be able to support new 

functionalities. In some cases, a complete overhaul of existing systems is necessary, 

which can be difficult for agencies with budget constraints.  

Implications for ITS 

Some of the ways that challenges related to existing systems and supporting technology 

could impact AI-enabled ITS applications are summarized below. 

• Higher cost of ITS support infrastructure and limited funding: A survey of 

municipal executives and city officials in North America on the readiness of cities 

to undertake smart cities initiatives revealed that funding is the top barrier and 

cities are struggling to find innovative funding alternatives (Learn, 2014). 

Planning, deployment, and maintenance of systems utilizing AI technologies in 

ITS contexts involve cost components which include but are not limited to 

hardware manufacturing, custom software and interface development, data 

storage, data servers, communications, and power networks. For example, the 

deployment of Automated Traffic Signal Performance Measures (ATSPM) is 

typically comprised of the following components which increases the overall cost 

of implementation (Lattimer, 2020).  

o Advanced traffic signal controllers 

o Power and communication network (Cellular, Fiber, etc.) 

o Central server for data storage and processing data and video feeds 

o Special ATSPM software 

o Detection system (detectors, cameras, etc.) 

o Supporting infrastructure (light poles, ground cabinets, etc.) 

 

• Compatibility, data storage and processing issues with existing ITS 

systems: With a limited budget and lack of well documented and proven benefits 

for new AI technologies, agencies are typically reluctant to adopt new 

technologies. Many existing traffic signal systems are not able to support or are 

not compatible with advanced traffic controllers. Such hardware-software 

compatibility issues could result in unanticipated delays from integrating systems. 

Furthermore, traffic management centers often do not have the capacity to store 
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large amounts of data for analytics purposes because AI-based technologies 

involve massive datasets, such as video feeds from traffic cameras.  

• Continuous power and communication supply needed: AI based

technologies and applications require continuous power supply, communication

networks and advanced servers to transmit and receive large amount of data for

real-time analytics. This is of crucial importance for rural AI applications in

transportation where it may be difficult and extremely costly to bring power and

communications. Inclement weather conditions may also cause power outages,

disruption in roadway network, damage to the field ITS devices and other

supporting infrastructure thus making it as a potential barrier for AI adoption.

Insights and Lessons Learned 

Despite the challenges and barriers discussed above, several AI based technologies 

have made their way into the ITS industry. They have been deployed in small-scale 

controlled environments such as autonomous shuttles and intelligent traffic signal 

controllers updating traffic control/signal plans in real-time based on the demand (Lopez 

Conde & Twinn, 2019). The autonomous shuttles such as Olli (Local Motors, 2021) can 

analyze traffic conditions and make real-time routing decisions accordingly. Furthermore, 

some states like Utah and Georgia are among the early adopters of innovative ATSPM 

systems and have well documented benefits-cost analysis. Many other states are 

assessing the relevance and benefits of AI technology, with some states in pilot phases. 

The technology is relatively mature and there are numerous vendors in the market 

offering advanced signal controllers capable of real-time traffic signal optimization such 

as adaptive signal controllers (Day et al., 2020; Lattimer, 2020).  

Some of the potential solutions are documented below to help accelerate the adoption of 

AI applications in ITS industry. 

• Launching pilot deployments to uncover potential barriers and

demonstrate benefits: Conducting pilot studies for new ITS applications

leveraging AI technology can help overcome some of the barriers for AI adoption.

It can help demonstrate the potential benefits of AI technology and help

understand the system requirements such as hardware-software integration, data

storage, communication flow before large-scale deployment. The concept of

conducting pilot studies is not new. The U.S. Department of Transportation is

currently supporting the advancement of connected vehicle technology to

uncover potential barriers and documenting the lessons learned (USDOT, 2022).

An AI based traffic management pilot study conducted by Nevada Department of

Transportation in partnership with Nevada Highway Patrol and Regional

Transportation Commission demonstrated safety benefits in terms of crash

reduction and increase in emergency response times (AASHTO Journal, 2019).
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• Leveraging existing ITS infrastructure where applicable to minimize costs:

The deployment of ITS systems such as toll collection systems or express lanes

require construction of costly infrastructure, such as fiber optic communication

networks, ITS devices (CCTV cameras, DMS, speed detectors, etc.), ITS/light

poles, cabinet controllers and switches, and transportation management center

(TMC) support. Much of this existing infrastructure components can still be used

for various applications and purposes. For example, in speaking to the ITS JPO’s

AI for ITS Program about their ATCMTD deployment (G. Donaldson & M. Rosica,

interview, June 2022), the Delaware DOT emphasized the importance of their

telecommunications system to support AI and other technologies. They have

invested over the past 25 years in enhancing and expanding the state’s telecom

system. Even though technology has changed over the years, they have been

able to adapt the telecom, central office system, and field requirements

accordingly, which they attribute as a big part of their success. In terms of sensor

infrastructure, a camera pole may be used to mount multiple CCTV cameras as

well as detectors. For communication networks, spare fiber optic cables (strands)

also known as “dark fiber” may be used for new ITS applications by multiple

stakeholders. Fiber resource sharing is quite common in the State DOT practice

where state-owned right-of-way and fiber network is leased to various private

entities through resource sharing agreements (MDOT SHA, 2022). VDOT has

access to 3,700 miles of fiber with spare capacity of around 2,500 miles which

could be used to accommodate communication needs of newer AI-focused ITS

applications (Farajian, 2019). Many AI applications rely on data feeds from CCTV

cameras for video analytics purposes. Rather than installing new cameras for AI

applications, feeds from existing CCTV cameras may be used, thus lowering the

cost of AI applications and alleviating budget constraints (ITS JPO, 2022).

• Using cloud and edge computing to overcome computational, bandwidth

and latency issues: Legacy systems used by many state and local

transportation departments often have limited data storage and computational

power. Video feeds from a few dozen city cameras may easily impact the

capacity of data servers housed in the TMCs. One possible solution to tackle this

challenge is by exploring cloud computing platforms such as Amazon, Microsoft,

and Google (Statistica, 2021). Utilizing cloud computing can alleviate data

storage and computing requirements from the TMCs. However, with a large

amount of data being collected and transmitted, issues related to bandwidth and

latency may still arise. A solution might be to explore edge computing options,

which bring computing as close to the source of data as possible to reduce

latency and bandwidth use. A research study was conducted to augment driving

behavior analytics by incorporating AI/ML algorithms on edge computing

platforms (Qi, 2020). Because the majority of the data is collected and analyzed

closer to the source rather than being stored on the cloud or TMC, this may help

overcome some of the privacy concerns with AI applications related to distracted

driver behavior which involve audio-visual data collection. According to one
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estimate, by 2025 around 75% of the data will be processed outside the 

traditional data center or cloud (Gartner, 2018). 

Another possible solution is the use of Field Programmable Gate Arrays (FPGA) 

and Application Specific Integrated Circuits (ASIC) as hardware accelerators to 

offload data intensive computation from the CPU and increase bandwidth and 

reduce latency (Possa 2011). Hardware accelerators have become more 

prevalent in dealing with large datasets due to their massive parallelism and 

reconfigurability on the bit level (Danopoulos et al. 2020).  Current FPGAs on the 

market that can deal with these large datasets tend to be very expensive, but 

cloud platforms such as AWS have made this solution more feasible by hosting 

these high-powered FPGAs on their rentable instances. These hardware 

accelerators can be used similarly to an AWS instance and can be significantly 

easier to integrate for consumers (Lesser et al. 2021).  

• Leveraging clustered computing to augment processing power: With the 

lack of processing power in current legacy systems, an alternative solution is the 

adoption and utilization of multiple computing nodes working as a singular entity. 

Some of the benefits of using a “cluster” of computers is higher availability in the 

event of device failure, load balancing to ensure even workload across nodes, 

and higher performance through the parallelization of tasks across devices to 

process large datasets quickly and efficiently. Additionally, these computing 

clusters can be moved closer to the local space to enable lower latency of 

communication for time dependent tasks (Sharma et al. 2009).  

• Adopting systems engineering best practices to build more adaptable and 

resilient systems: With the lack of proper documentation for legacy systems it is 

challenging to add newer functionalities without a proper understanding of the 

critical decisions of when, why, and how decisions were made regarding system 

components and sub-components design. Application of the systems engineering 

process to ITS projects helps keep better documentation as well as building more 

adaptable and resilient systems (TxDOT, 2021). Furthermore, FHWA has also 

developed a guide document to apply scrum and agile methods into ITS project 

development (Staples et al., 2017). Such requirement-led design of systems 

coupled with software-hardware integration, verification and validation can help 

resolve compatibility issues and enable ITS systems to incorporate newer AI 

based functionalities.        

• Building sustainable AI solutions to reduce negative environment impacts: 

As data becomes more available than ever at an unprecedented rate, AI/ML 

algorithms continue to develop and mature. However, processing such large-

scale data and training AI/ML algorithms require very high computational power 

leading to higher energy consumption. The environmental impacts of AI systems 

have been studied and documented by researchers more recently and studies 

have shown that environmental impact of training a single, large deep learning 
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algorithm such as NLP could approach that of carbon emissions of five vehicles 

over their life span (Lacoste et al., 2019; Strubell et al., 2019). Sustainable AI 

approaches can help lessen the negative environmental impacts of AI systems 

by training AI/ML models in a faster and efficient manner, shrinking down the size 

of models, utilizing fewer compute cycles, obtaining higher utilization rates of 

existing hardware, and preventing idle power consumption (The Imperative for 

Sustainable AI Systems, 2021).    

2.3 Bias  

Table 5. Summary of the Bias Challenge and Potential Strategies to Address It 

Summary of Bias 

What is it? When AI systems lead to unfair and unequitable outcomes due to 

underrepresentation of subpopulations, or due to human or 

systemic/institutional biases  

Why does it 

matter for ITS? 

• Groups of roadways users may be underrepresented in training 

datasets used for machine vision applications (e.g., for TSMO 

applications such as Smart Intersections). 

• Data are sparse for work zones despite being one of the most 

vulnerable areas of roadways for fatalities. 

• When data are collected from users of mobile applications for 

transportation, the samples may be biased. 

• Data may be biased due to unequitable distribution of sensors 

along roadways. 

How can it be 

addressed? 

• Adopting a socio-technical systems approach to mitigating bias 

in AI systems 

• Bringing together diverse teams for AI systems development 

• The most accurate model is not always the one with the least 

harmful impact 

• Collecting sufficient data to measure error statistics across 

demographic groups 

• Choosing fairness metrics that reflect the values of the 

organization and the groups for whom the AI system has the 

highest risk of harm 

• Monitoring bias mitigation is an ongoing process that extends 

throughout the AI system lifecycle 

Description of Challenge 

Once just the supporting technology of online advertisement and spam filters, ML is now 

proliferating through more foundational and high-stakes industries. As it spreads, so 

does its potential to perpetuate discriminatory practices and adverse social outcomes 
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(Chouldechova & Roth, 2020). NIST categorizes potential biased outcomes resulting 

from AI systems in the three following categories (Schwartz et al., 2022): 

1. Systemic biases result from decisions and practices that organizations 

undertake that result in some social groups being advantaged or favored over 

others. They can be a result of institutional biases like institutional racism, 

sexism, and ageism or lack of consideration of universal design principles. These 

biases can be present in datasets used to train AI, but also in the processes, 

norms, and decisions made across the AI lifecycle. Systemic bias can also stem 

from biases in the hardware used to collect data. Bias maybe introduced through 

sensors when sensors are tuned and calibrated to be more sensitive for some 

population than others. For example, a vehicle classification sensor whose 

parameters are adjusted to classify the distinction between a sedan and sports 

utility vehicle (SUV) may not accurately classify other vehicle types such as 

pickup trucks. Choices of location and density of sensor placement may also 

result in biased outcomes.  

2. Statistical and computational biases appear from sampling or representational 

errors that mis-map training data samples to the operational contexts the AI 

system is deployed in. They can arise when data is systematically (non-

randomly) missing about certain social groups and cannot effectively extrapolate 

when applied in operational settings to groups underrepresented in its training 

data. The error can also arise because of poor data collection processes, 

misinterpreted data, mislabeled data, poor encodings of complex social 

phenomena into simpler mathematical representations, wrong data, treatment of 

outliers, and imputation factors. Once the AI system is put into operational 

practice, this can lead to unexpected disparate and unfair outcomes because of 

the differences between the training data and the real-world data it is being fed. 

3. Human biases emerge from faulty heuristics in human thought and judgement. 

They are not unique to human interactions with AI and can be present in any 

setting, but it is useful to consider them in socio-technical systems that involve AI. 

They influence how an individual or group of individuals perceive information, 

such as the outputs of an AI system, and then make decisions based on those 

perceptions. Humans often possess hidden or unknown biases which can impart 

bias on the AI system if they are not identified and are passed along during data 

collection, feature selection, and model building (Artificial Intelligence and the 

Economy, 2022).    

NIST recommends addressing AI bias through examining three challenge areas: issues 

having to do with datasets, issues of measurement and metrics to support testing, 

evaluation, validation, and verification (TEVV), and issues related to human factors 

(Schwartz et al., 2022). 
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• Challenges related to bias in data come in many forms. Sampling bias occurs 

when datasets are based on data samples that are not randomized or are not 

representative of a population for which the algorithm is making predictions. 

Often data for ML are scraped from social media or mobile applications and used 

to build models that are assumed to work on a general population, when they are 

only representative of users of those platforms (NIST, 2022). Many popular ML 

models work under assumptions on the data, such unimodal distributions with 

low multicollinearity; however, data often are multimodal when not disaggregated 

by demographic features (Schwartz et al., 2022). A naïve assumption of some 

practitioners is that by removing sensitive attributes from the data, such as race 

or gender, the system will not be able to produce biased results. However, quite 

often these models still have the potential to discriminate because of collinearity 

in variables (e.g., zip code often being a strong predictor of race) (Ghani et al., 

2021). 

• Challenges related to TEVV bias require a holistic view of algorithms, data, and 

fairness metrics. One risk is that practitioners use a faulty proxy variable in place 

of a variable of interest that they cannot measure. For instance, a ML system that 

predicts criminal activity may use arrest data as a proxy for crime; however, there 

is reason to believe that minority populations are policed at higher rates, making 

arrests a biased proxy for criminality (Chouldechova & Roth, 2020). Another 

consideration is sacrificing bias reduction for system accuracy. With 

heterogeneous data, a system may optimize overall accuracy by performing well 

on the majority group within the dataset and sacrificing performance on minority 

groups (Chouldechova & Roth, 2020). It is possible and common that a variable 

is positively correlated with the target variable with the majority group but 

negatively with the other groups (Ghani et al., 2021). Finally, human designers 

often make decisions about what variables to exclude or include in a model, 

another avenue for potential bias (Schwartz et al., 2022).  

• Challenges related to human factors often surface when AI systems are 

deployed in real world settings. Frequently, as time passes after an application is 

deployed, the users repurpose or use it in unforeseen ways (Schwartz et al., 

2022). When the system is informing some intervention, organizations run the 

risk of creating feedback loops, scenarios where the system is informing 

decisions that will impact future data and therefore system behavior. The 

example of an AI system for crime prediction is instructive. If the system is being 

used by police to decide where to patrol, it is likely that more arrest data will 

come out of the areas the system is already suggesting, potentially accumulating 

more bias over the lifetime of system operation (Chouldechova & Roth, 2020).  

Implications for ITS 

Some of the ways that AI bias could impact ITS are summarized below. 
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• Groups of roadway users underrepresented in training datasets: Many ITS

systems that leverage AI will have primary functionality based on machine vision

algorithms. For instance, agencies are already deploying applications that use

object detection on CCTV video camera feeds to understand traffic and

pedestrian densities and flows in real-time (Ozbay, 2022). For these applications

to function robustly, they have to be trained on sufficient images of road-user

types. For instance, vehicle types with limited market penetration, such as 3-

wheel motorcycles or dirt bikes, might not be sufficiently represented in training

data.

• Sparsity of work zone data: According to FHWA, there were 857 total work

zone traffic fatalities in the year 2020. This represents up to 3% of all workplace

fatalities every year. Because of the elevated risk of traffic incidents in work

zones, it is vital that AI ITS systems be robust to work zone conditions which

generally do not resemble other road segments. For instance, automated

vehicles could struggle to recognize construction workers, who often do not

resemble other pedestrians due to equipment such as orange vests, as humans.

One project addressing this is NYU C2SMART University Transportation Center,

who have developed a VR testbed to collect higher quantities of work zone data

(Ergan et al., 2021).

• Biased sampling due to mobile applications: Many transportation services are

now tied to mobile phone applications. The companies that run these services

collect data on their user bases and at times share that data with agencies for

partnerships and planning. This data will likely be non-representative if carelessly

used as representative of the entire ecosystem of transportation users or as a

proxy for transportation services demand. For example, people living in transit

deserts are often dependent on ride-hailing services (Schwartz et al., 2022). If an

AI model uses those data for predicting demand of transportation service types, it

might come to the conclusions that demographics from those neighborhoods

prefer ride hailing, when they actually exhibit that behavior because of lack of

feasible alternatives.

• Biased sampling based on sensor locations: Almost always, sensors of

different types are not distributed uniformly across geographic areas. Usually,

sensors are most dense in areas where most humans live (Machine Learning

and Artificial Intelligence to Advance Earth System Science: Opportunities and

Challenges Workshop, 2022). There can also be unequal distribution of sensors

across geographies that correlate with demographics, such as having more

robust sensing units in higher income areas. This can impact and bias AI system

performance in a myriad of ways. For instance, a state agency might implement

an AI system that uses roadside sensors to predict road weather conditions. In

less populated rural areas, there might be less density of robust sensors, leading

to worse predictions about snowfall or heavy rain in these areas.
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Insights and Lessons Learned 

Some potential strategies and lessons learned to identify, mitigate, and address bias in 

AI are summarized below. 

• Adopting a socio-technical systems approach to mitigating bias in AI

systems. An organization’s goal is not only to verify that the AI model is fair, but

also that the overall system and its outcomes are fair (Ghani et al., 2021). The

organization could consider adopting processes that include involving

stakeholders, examining cultural dynamics and norms, and assessing societal

impacts (Schwartz et al., 2022). Different stakeholder groups might have different

ideas of what constitutes bias in an operational setting, so organizations could

consider working across these groups to come to a reasonable consensus (GAO,

2021).

• Bringing together diverse teams for AI systems development. Socio-

technical approaches require intimate understanding not just of engineering,

mathematics, and computer science, but also human and social factors that will

determine outcomes in operational settings. As such, teams developing AI

systems may want to include experts on cognitive science, social science,

human factors engineering, design, and more. They can also include people of

different demographics and experiences who can identify a wide variety of

concerns. Red teams (teams that identify vulnerabilities, risks, and failure modes

of systems), in particular, can benefit from diverse perspectives to be able to

identify a wide range of vulnerabilities (NIST, 2022).

• The most accurate model is not always the one with the least harmful

impact. Selecting models solely on accuracy is usually not the best approach to

mitigating bias. The choice of the model’s objective function itself might encode

bias. Sub-populations may be harmed because the algorithm over-indexes on

the majority (Schwartz et al., 2022). One technique to tackle this issue is by

resampling and/or reweighting data points corresponding to protected groups in

the algorithm (Ghani et al., 2021).

• Collecting sufficient data to measure error statistics across demographic

groups. Models that are “blind” to protected status such as race or gender can

still discriminate. Because of correlations among covariates, simply not including

protected status categories as features, such as race or gender, in the ML

algorithm does not guarantee that the algorithm will not lead to discriminatory

outcomes (Ghani et al., 2021).  Instead, practitioners may want to collect

sufficient data that is more diverse and appropriately balanced to measure

disparate impacts across relevant groups so that bias can be identified and

remediated.
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• Choosing fairness metrics that reflect the values of the organization and 

the groups for whom the AI system has the highest risk of harm. When 

attempting to quantify fairness, there are many different metrics that AI teams 

may consider. They may choose to look at the following metrics and many more 

across groups: false positive rate, prevalence, false discovery rate, and false 

negative rate. However, it has been proven that except for in trivial settings, it is 

impossible to simultaneously equalize all of these metrics (Chouldechova & Roth, 

2020). Therefore, it is helpful for AI teams to understand what metrics members 

of affected groups consider most fair in a given operational setting (Ghani et al., 

2021). For instance, for an ML algorithm that decides whether to grant bail based 

on predicted risk of crime recidivism, is it more important that the chances that a 

given Black or white person will be wrongly denied bail is equal, or that for people 

who should be released, the chances that a given Black or white person will be 

denied bail is equal (Ghani et al., 2021)? 

• Monitoring bias mitigation is an ongoing process that extends throughout 

the AI system lifecycle. Risk measurement is not a static activity. AI teams may 

want to consider not only continuous data collection on fairness metrics after 

system deployment, but also be willing to reevaluate the metrics decided on pre-

deployment as new information about the operational context is understood 

(NIST, 2022). There is no one set list of fairness metrics that works in every 

context, and it is inevitable that the framework of measures a team decides on 

originally will not be entirely correct. As the team learns more about the adverse 

and disparate social effects that the system might cause post-deployment, they 

can reevaluate their metric collection based on core organizational values (NIST, 

2022). 

2.4 Security  

Table 6. Summary of the Security Challenge and Potential Strategies to Address It 

Summary of Security 

What is it? When an attack, via cyberspace, targeting an enterprise’s use of 

cyberspace for the purpose of disrupting, disabling, destroying, or 

maliciously controlling a computing environment/infrastructure; or 

destroying the integrity of the data or stealing controlled information 
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Summary of Security 

Why does it 

matter for ITS? 

• Insufficient attention has been paid to the ways in which AI can 

be used maliciously. 

• Malicious entities could compromise the integrity of the 

decision-making process (e.g., data poisoning, model evasion). 

• Hacking cyber-physical infrastructure (e.g., DMS, Colonial Gas 

Pipeline) poses a threat.  

• Connected vehicle adoption may increase vulnerabilities. 

• Automated vehicles, which rely heavily on AI algorithms, make 

safety-impacting driving decisions. 

• Agencies and the public may mistrust AI applications.  

How can it be 

addressed? 

• Understanding potential security threats from misuse of AI-

based applications to better forecast, prevent and mitigate the 

threats 

• Following cybersecurity best practices 

• Collaboration among various stakeholders to identify 

transportation cybersecurity best practices 

• Developing workforce and domain expertise to curtail security 

issues 

• Strengthening the security of AI systems by addressing 

vulnerabilities 

• Utilizing intrusion and misbehavior detection systems to 

enhance safety of AI-based ITS systems 

• Retraining ML models at regular intervals to retain the quality of 

ML predictions 

• Securing physical infrastructure to block potential physical 

intrusion into the system 

Description of Challenge 

While AI/ML applications continue to develop and mature at an unprecedented rate as 

data becomes more available, their wide-scale adoptability in the transportation 

sector is still limited primarily due to safety and security concerns, as well as lack 

of comprehensive standards related to automated vehicles (Koopman et al., 2019; 

Koopman & Wagner, 2018). Quantifying the benefits of adopting AI-based technology is 

well documented and has been a topic of interest in the industry, academia, and 

government bodies. At the same time, less attention has historically been paid to the 

ways in which AI/ML applications can be exploited by bad actors to compromise the 

decision-making of AI systems (Brundage et al., 2018). Security and safety of cyber-

physical infrastructure is of paramount importance and a potential barrier for AI 

applications.  

Cyberattacks continue to be on the rise. The automotive industry is one of the most 

critical industries vulnerable to cyberattacks (The Road to Secure and Trusted AI, 2021). 
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Cyberattacks can be broadly classified into two categories. In the first category, attacks 

are launched through malicious use of AI to steal sensitive information through 

impersonation. In the second category, adversaries exploit the inherent weakness in AI 

to steal information, distort the data, and corrupt the ML models.  

Cyberattacks through Malicious Use of AI for Impersonation. According to Statista, 

a survey of 309 business leaders conducted in 2021 documented potential scenarios of 

AI-enabled cyberattacks worldwide (Types of AI-Enabled Cyberattacks 2021, 2022). 

Nearly 68% of the respondents indicated that AI can be used for impersonation and 

spear phishing-attacks. Spear phishing attacks attempt to acquire sensitive information 

or access to a computer system by sending counterfeit messages that appear to be 

legitimate. Other types of attacks mentioned included, ransomware, misinformation, 

undermining data integrity, targeting networks, and deepfakes.   

Cyberattacks through Exploitation of AI Weakness. While machine learning 

algorithms, such as deep neural networks, have achieved impressive results in terms of 

image classification, they can be very unstable to small perturbations of the images 

(Steinhardt et al., 2017). AI specific cyberattacks can occur during various stages of ML 

model development i.e., during training and/or production (predictions). Adversarial 

machine learning attacks use malicious inputs designed to fool machine learning 

models. These attacks can include data poisoning, where malicious actors inject false 

training data with the aim of corrupting the trained model and compromising the 

classification and/or detection results (Steinhardt et al., 2017). Another form of 

adversarial machine learning attack is evasion, which happens at the inference or model 

prediction stage. In this type of attack, the data is distorted and manipulated (i.e., 

changes in pixels of an image) so that the model fails to correctly classify the results 

accurately (Suciu et al., 2018).  

Implications for ITS 

• Insufficient attention has been paid to the ways in which AI can be used 

maliciously. The benefits of AI systems are well understood and documented; 

however, less attention has been paid to the ways in which AI/ML algorithms can 

be exploited to compromise the overall accuracy of the models as well as 

compromising their decision-making process, especially in transportation sector.  

• Malicious entities could compromise the integrity of the decision-making 

process (e.g., data poisoning, model evasion). There are several ways in 

which malicious actors can exploit AI/ML algorithms and impact decision 

outcomes. For self-driving cars, an image of a stop sign can be tampered with by 

changing a few pixels in specific ways through a data poisoning attack. In this 

scenario, although humans can still recognize as a stop sign, it nevertheless 

could be misclassified by an ML model (Brundage et al., 2018). Speed limit signs 

can also be tampered with in a way that a self-driving vehicle would misclassify 

the speed limits and pose danger to the operation of the transportation network. 
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Malicious entities could also take direct control of a vehicle, manipulate the 

operation of vehicle, and exploit the vulnerabilities in the systems using 

adversarial ML, which may have dire consequences on safety.  

• Hacking of cyber-physical infrastructure poses a threat. Historically, the ITS 

industry has experienced fewer cyber related attacks compared to other 

industries like the internet or biometrics; however, it is highly vulnerable to such 

attacks. There have been some cyberattacks on critical infrastructure and 

transportation systems recently. Dynamic message signs (DMS) which serve as 

a bridge between transportation agencies (TMCs) and traveling public have 

historically been hacked several times (Kelarestaghi et al., 2018). A more recent 

ransomware attack halted the operation of the Colonial Gas Pipeline, for which 

state of emergency was declared calling for a coordinated response to the threat. 

Vasudevan et al., 2020 highlighted other potential cyberattacks against ITS 

systems including hacking into and changing traffic signs, hacking automated 

fare payment systems, and manipulating communication between first 

responders.   

• Connected vehicle adoption may increase vulnerabilities. According to 

researchers, as the connected vehicle market adoption rate increases, cyber 

threats will increase over time. Connected and automated vehicles utilize 

numerous communication technologies and are very susceptible to cyber 

attacks. These communication technologies include but are not limited to 

Dedicated Short Range Communication (DSRC), Satellite Communication, 3G, 

4G and 5G cellular, Wi-Fi and LiDAR. Cyber attacks against connected vehicles 

and ITS systems will be of high impact as the cyber attacks might potentially lead 

to multiple vehicular crashes, create traffic jams, impact traffic operation leading 

to a ripple effect causing huge financial losses (Huq et al., 2017). 

• Automated vehicles, which rely heavily on AI algorithms, make safety-

impacting driving decisions. SAE level 5 autonomy requires that the AVs take 

complete control of driving conditions and make decisions (SAE J3016C, 2021) 

such as steering control for movements, emergency braking when the hazards 

are detected on the road, acceleration and deceleration, stopping at a stop sign, 

etc. AVs will make such decisions based on detection systems by incorporating 

data and communication from various sources such as sensors, LIDAR, 

Roadside Units (RSUs), and navigation systems. For level 5 autonomy, the AI/ML 

algorithms will need to accurately classify objects such as regulatory speed 

limits, stop signs, and roadway hazards under all conditions. Furthermore, AI/ML 

algorithms used in AVs will also need to be trained to identify tampered roadway 

signs to avoid adverse outcomes. 

• Agencies and the public may mistrust AI applications. These types of attacks 

on cyber-physical systems are of significant concern for public agencies like state 

and local departments of transportation and can also have a negative impact on 
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public perception about safety of transportation systems leveraging AI 

technology. A wide-scale implementation and adoption of AI systems in the ITS 

sector will require enhanced safety and security throughout the operational 

lifetime of the systems as identified in the Asilomar principles (AI Principles, 

2017). Please see the Stakeholder Perception Section for more information.  

Insights and Lessons Learned  

The growing number of cyberattacks and exploitation of AI/ML by malicious actors in 

various industries have raised security concerns to consider. While the number of 

cyberattacks in the ITS domain have been less than other industries, the threat still 

exists. As higher levels of vehicle autonomy are achieved and automated vehicles 

penetrate the market, the number of cyber-physical attacks are also expected to rise. 

Some of the potential solutions to help address the security concerns of cyber-physical 

systems are discussed below.  

• Understanding potential security threats from the misuse of AI-based 

applications to better forecast, prevent and mitigate the threats: As 

discussed earlier, insufficient attention has been paid to the ways in which 

AI/ML systems can be manipulated by bad actors. This manipulation can take 

several forms like malicious entities hacking in to and taking control of 

automated vehicles or exploiting the AI/ML algorithms to compromise the 

decision-making by data poisoning and adversarial machine learning. To 

mitigate these potential security threats, the ITS AI community, agencies and 

academia will need to understand the possible scenarios in which systems 

can be exploited in order to help forecast, prevent and mitigate the threats 

(Brundage et al., 2018).   

• Following cybersecurity best practices: Agencies can improve the overall 

security of their systems, including AI components, by following general 

cybersecurity best practices. The USDOT’s Cybersecurity and ITS Best 

Practice Guide (Krause et al., 2019) highlights security best practices, such 

as changing default usernames and passwords, encrypting communications 

between the TMC and ITS infrastructure, turning off unused ports and 

protocols, and conducting penetration testing.  

• Collaborating among various stakeholders to identify transportation 

cybersecurity best practices: Collaboration between federal and state 

agencies, academia, and practitioners as well as public-private partnerships 

can help reduce cyber risks to the nation’s critical infrastructure (NIST, 2019). 

Close collaboration between agencies, industry, and academia can help bring 

potential solutions and best practices to the industry and/or expand the 

existing capabilities of algorithms to secure AI systems. For example, 

DARPA’s 2016 Grand Challenge called “the Spectrum Collaboration 

Challenge (SC2)” encouraged researchers to use AI to optimize use of the 
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wireless spectrum (DARPA, n.d.). Additionally, the USDOT created the 

“Inclusive Design Challenge” in 2020 to seek solutions from industry and 

academia to enable people with disabilities to use AVs to access jobs, 

healthcare, and other critical destinations researchers (USDOT, 2022b). A 

similar challenge or other outlet for cross-sector collaboration could benefit 

the security of AI systems.   

• Developing workforce and domain expertise to curtail security issues: 

State DOT staff has traditionally been composed of transportation planners, 

engineers and designers with a civil/architecture engineering/planning 

background, and often lack resources and skills to implement and maintain 

AI-based ITS systems. With the advent of ITS applications in transportation 

sector, domain expertise has evolved. However, the agencies will need to 

develop the skillsets of existing staff, expand, and diversify the workforce 

across cybersecurity domains, as well as collaborate with other industries to 

implement the best practices to curtail security issues.   

• Strengthening the security of AI systems by addressing vulnerabilities: 

While ML techniques such as deep neural networks offer predictions and 

accuracy at a great level, they are still vulnerable to small perturbations in the 

input data. As discussed earlier on, bad actors can distort and manipulate the 

images which may seem normal to a human eye, but which would be 

misclassified by ML algorithms. Some robust algorithms like DeepFool have 

been introduced recently that detect the perturbations that fool deep 

networks, enhancing the reliability and robustness of ML classifiers against 

adversarial attacks (Heaven, 2019; Madry et al., 2019; Moosavi-Dezfooli et 

al., 2016). 

• Utilizing intrusion and misbehavior detection systems to enhance 

safety of AI-based ITS systems: Intrusion detection systems have received 

much attention in the computer science domain. They train AI/ML algorithms 

to detect network intrusions, behavior-based anomalies, and misuse (John et 

al., 2016; Liao et al., 2013). These systems are very common in daily use 

applications such as spam/phishing email classification or real-time credit 

card fraud alert systems. In the ITS domain, recent similar work was 

conducted at the University of Virginia, in which a proposed rule-based 

misbehavior detection system detects and classifies false information through 

vehicle communication technologies (Gyawali & Qian, 2019). Although these 

systems can detect anomalies with a high confidence and accuracy, more 

work is needed to enhance the safety and security of AI systems as it has 

direct impact on public safety and critical operations. 

• Retraining ML models at regular intervals to retain the quality of ML 

predictions: A way to retain the quality of ML predictions and to remove data 

poisoning, noise and bias issues is to retrain the ML models at regular 
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intervals. Maintaining the predictive power of deployed ML models is difficult 

and may decline over time. With the possible addition or deletion of data 

points, retraining the models may be necessary as real-world data keeps 

evolving and older training data may no longer be a good representation of 

the real-world. 

• Securing physical infrastructure to block potential physical intrusion to

the system: Another possibility to block intrusion into AI-based ITS systems

is to secure the physical infrastructure. ITS data from field devices is sent to

the TMC via fiber optics or cellular communications. The cabinet control

devices for CCTV cameras, DMS signs, speed detectors, weather sensors

and incident detection cameras may be vulnerable to possible intrusion. The

device power and communication control come from the cabinets housing

device controllers. Physically securing the field devices, such as by installing

attack resistant cabinet door locks, can block potential physical intrusion to

the system. Additionally, limiting who has control access of physical

infrastructure could help with security. For example, in speaking to the ITS

JPO’s AI for ITS Program about their ATCMTD deployment (E. Kopinski et al.,

interview, April 2022), the Missouri DOT (MoDOT) explained that for the traffic

vision camera feed, their vendor can only look at the view set by MoDOT. The

vendor cannot physically control the camera (e.g., zoom).

2.5 Privacy 

Table 7. Summary of the Privacy Challenge and Potential Strategies to Address It 

Summary of Privacy 

What is it? Inability of an AI system to protect individual privacy, including 

personally identifiable information (PII) and other sensitive 

information 

Why does it 

matter for ITS? 

• New AI applications in ITS could heighten identity, behavioral,

and location privacy concerns.

• Privacy leakage could lead to liability issues for the agency and

reduced trust from system users.

• Agencies may have to consider tradeoffs between privacy and

utility in data.

• AI applications in ITS that may rely on or capture sensitive

information, such as pedestrian detection, automated license

plate readers, personalized traveler information, and driver

monitoring, could pose higher privacy risks.
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Summary of Privacy 

How can it be 

addressed? 

• Obscuring/encrypting sensitive data 

• Collecting non-sensitive data 

• Using synthetic data 

• Applying differential privacy 

• Using a distributed protection technique 

• Using edge computing to limit PII collection 

• Establishing data sharing techniques 

• Developing privacy policies  

Description of Challenge 

According to NIST (NIST Glossary, n.d.), sensitive information is information where the 

loss, misuse, or unauthorized access or modification could adversely affect the national 

interest or the conduct of federal programs, or the privacy to which individuals are 

entitled under 5 U.S.C. § 552a (the Privacy Act) (GAO, 2021). AI uses massive amounts 

of data that could impact the privacy of individuals and/or institutions through data 

manipulation, speech, face or image recognition, and tracking (Vasudevan, Townsend, 

Dang, et al., 2020).  

Even if sensitive data are secured, ML models trained on sensitive data could be 

exploited to reveal it. For example, ML models could leak information about the 

individual data records on which they were trained via a membership inference attack. In 

a membership inference attack, given a data record and black-box access to a model, a 

attacker can determine if the record was in the model’s training dataset (Shokri et al., 

2017). An attacker could use a membership inference attack to reveal or reconstruct 

data used to train the original ML model, which could reveal sensitive data (if it was used 

in model training). Membership inference attacks are possible based on the concept of 

overfitting. A trained ML model will likely perform better on training examples than those 

it has never seen before.  

Implications for ITS 

As the scope and breadth ITS applications continue to advance, a primary concern 

regarding the tracking of both people and goods within the transportation system is that 

of privacy (Fries et al., 2011). Researchers classified privacy issues in ITS into three 

broad categories: (1) identity privacy, (2) behavioral privacy, and (3) location privacy 

(Hahn et al., 2019). Identity privacy refers to the privacy of a driver, passenger, traveler, 

pedestrian, or other user’s real-world identity, which could be identified via their driver’s 

license number, name, biometric data, or other personal data. Behavioral privacy refers 

to the privacy of data that describes various aspects of a group or individuals and their 

actions within ITS, such as travel patterns. Finally, location privacy within ITS refers to 

the right of a user to travel or move about the system without concern of their location 

being exposed.  
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While privacy concerns in ITS are not new, new AI/ML applications in ITS could heighten 

them. If sensitive data are communicated to and processed by AI systems, then there 

are new opportunities for those data to be leaked or hacked. Therefore, agencies may 

have to consider tradeoffs between privacy and utility in data. Deep learning in particular, 

such as computer vision applications, may bring tension between needing large amounts 

of labeled data and its usage that can reveal PII. While anonymization techniques, such 

as generalization and bucketization, are designed to protect the privacy, they may 

reduce the utility of the data (Li and Li, 2009).     

A few example AI applications in ITS where privacy could be a challenge, since they may 

rely on or capture sensitive information, are summarized below.  

• Pedestrian detection: Computer vision applications that detect individual

pedestrians could run the risk of leaking identity, behavioral, and/or location

privacy information. For example, behavioral privacy could be a concern if

pedestrians are tracked over time (e.g., the same pedestrians wait at the same

transit stops on weekdays).

• Automated License Plate Readers (ALPRs): ALPRs are AI-enabled camera

systems that automatically capture license plate numbers that come into view.

They may also capture additional data, such as the location, date, time, and

vehicle attributes (e.g., color, make, model). Since a license plate number is

connected to an individual vehicle registered in one state, it could be linked to

even more sensitive personal information. A report by NHTSA identified in their

literature review that some watch groups have expressed concerns regarding the

potential that law enforcement could use ALPR data to track people for

illegitimate purposes and target communities based on race, religion, or ethnicity

(Zmud et al., 2021). If an ALPR system is abused, it could lead to the agency

losing access to its ALPR program or worse. To mitigate this issue, many law

enforcement agencies have developed policies that protect the privacy of the

data collected through their ALPR programs (Zmud et al., 2021).

• Personalized traveler information: To benefit individual users, AI-enabled

personalized traveler information applications require individual data (e.g., GPS

and trajectory data, type of locations frequented, etc.). For example, many route

planning applications use AI to learn individual user preferences and driving

patterns to make route recommendations (Vasudevan, Townsend, Dang, O’Hara,

et al., 2020). However, there is a risk of location, behavioral, and possibly identity

privacy leakage if the data and model are not fully protected.

• Driver monitoring: AI can be used to detect whether a driver is in the vehicle

and even recognize who is operating the vehicle using facial recognition. AI can

also detect distracted, drowsy, and impaired driving by monitoring head position,

eye openness, posture, and other features (Vasudevan, Townsend, Dang, et al.,
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2020). These driver monitoring applications could impact identity and behavioral 

privacy.  

Insights and Lessons Learned 

Researchers and deployers have used a variety of strategies to protect privacy, some of 

which are summarized here. Leveraging a combination of strategies is more likely to 

preserve privacy than using a single strategy. Some privacy preservation strategies that 

may be useful for AI applications in ITS are summarize below. 

• Obscuring/encrypting sensitive data: Obscuring the data used for AI

applications can help protect privacy. For example, the sensitive data could be

removed, masked, or coarsened. Removing sensitive data could include hiding

sensitive columns or replacing sensitive strings. Masking sensitive data could

include a variety of techniques such as using a substitution cipher (i.e., replacing

sensitive values with encrypted ones) or tokenization (i.e., substituting sensitive

values with non-sensitive dummy values or “tokens”) (Considerations for

Sensitive Data within Machine Learning Datasets | Cloud Architecture Center,

n.d.). Another masking strategy is homomorphic encryption, which is a form of

encryption that allows users to perform computations on the data without

decrypting it (i.e., perform “encrypted ML”) (Thaine, 2020). Coarsening sensitive

data could include rounding or binning specific values. For example, as part of

the USDOT Connected Vehicle Pilot Deployment Program, the New York City

pilot site released event records that obfuscated time, location, and vehicle-

specific identifying data elements originally contained within the raw field

collected records (ITS Data Sandbox - NYCDOT - DataProcessing.Txt,

2017/2021).

• Collecting non-sensitive data: In some cases, non-sensitive data may act as a

viable alternative to sensitive data. For example, researchers have explored the

use of thermal imagery as a privacy-preserving alternative to video imagery for

pedestrian detection (Kieu et al., 2019). In another example, researchers from

the Connected Cities for Smart Mobility towards Accessible and Reliable

Transportation (C2SMART) University Transportation Center (UTC) developed a

continuous, real-time pedestrian detection framework that uses public CCTV

feeds and deep learning-based video processing to analyze sidewalk and

roadway density (USDOT Office of the Assistant Secretary for Research and

Technology, 2021). This approach preserves privacy due to both the low-

resolution nature of the camera feeds and the conversion of vehicles and

pedestrians into untraceable objects. In speaking to the ITS JPO’s AI for ITS

Program about their ATCMTD deployment (G. Donaldson & M. Rosica, interview,

June 2022), the Delaware DOT expressed that they are very careful about the

type of data they collect and who has access to it. Most of the data they use is

non-sensitive, public data.
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• Using synthetic data: According to the GAO, synthetic data are artificially

produced data that are intended to mirror the features of real data. They provide

an approach to preserve privacy when systems use sensitive or personally

identifiable information. Synthetic data can serve as a practical replacement for

the original sensitive data (GAO, 2021). However, to be of value, it is helpful for

the synthetic data to be representative of the intended population, and it is also

helpful to document and explain any assumptions made.

• Minimizing model overfitting: Model overfitting is the key weakness that allows

membership inference attacks to be successful. Therefore, minimizing overfitting

is one way to help prevent them. Regularization is one strategy that could help

minimize overfitting. Regularization is a class of methods (e.g., Lasso, ridge

regression) that fit a model using all predictors but constrain/regularize the

coefficient estimates to reduce overfitting (Chouldechova, 2017).

• Applying differential privacy: Differential privacy is a “formal mathematical

framework for quantifying and managing privacy risks” and can provide provable

protection against a wide range of potential attacks, including those in machine

learning (Wood et al., 2018). Random noise is added during processing to

generate ambiguity downstream so that privacy-impacting inferences cannot be

made based on ML model predictions (Prabhu, 2020). There are a number of

opensource privacy protection libraries available that include implementations of

differential privacy.

• Using a distributed protection technique: In some cases, using a distributed

or decentralized privacy protection technique, such as federated learning or

secure multi-party computation (MPC), may make sense. Federated learning is

“on-device” (Thaine, 2020) or “collaborative” machine learning that enables a

shared model to be learned while keeping all training data on the separate

devices or servers (“Federated Learning,” 2017). Secure MPC or “privacy-

preserving computation” is technique that allows for the distributed computation

of a function over distributed inputs without revealing additional information about

the inputs, such as sensitive data (Frikken, 2011). For example, in healthcare,

secure MPC has been applied to enable pharmacological collaboration and

genome-wide association analysis while keeping individual patient records

private (Telenti & Jiang, 2020).

• Using edge computing to limit PII collection: Edge computing where the data

are collected and processed as close to the source as possible without storing it

on servers could help mitigate some privacy issues. For example, an AI

application for pedestrian detection that processes video feeds could use edge

computing to limit collection and storage of PII by only transmitting derived

pedestrian counts.
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• Establishing data sharing agreements: According to the US Geological Survey 

(USGS), data sharing agreements are formal contracts that detail what data are 

being shared and the appropriate use for the data (Data Sharing Agreements | 

U.S. Geological Survey, n.d.). These agreements may be beneficial when 

proprietary and/or sensitive data are being shared across multiple entities. The 

type of agreement or agreements to consider will depend on the relationship 

between entities sharing the data. For example, according to recent market 

research on AI for ITS (See Appendix A), a majority of respondents mentioned 

using at least some form of proprietary data for their AI applications, which were 

either purchased from agencies for whom the AI applications were being 

developed or were provided by the agencies at no cost through data sharing 

agreements.  

• Developing privacy policies: Clearly defined policies and guidelines on what 

type of user data may be tracked, when, and for what purpose are helpful 

(Vasudevan, Townsend, Schweikert, 2020). For example, in one case study 

identified by NHTSA in its state of the practice report on ALPRs (Zmud et al., 

2021), significant negative public sentiment regarding potential privacy concerns 

over law enforcement’s use of ALPRs prompted the state legislature to hold 

hearings, which resulted in the development of a statewide policy with clear 

guidelines on data protection, access, collection, and retention. Interviewees 

from this case study indicated that the existence of this policy to protect resident 

privacy resulted in the agency receiving no privacy complaints about their 

agency’s use of ALPRs. In another example, in speaking to the ITS JPO’s AI for 

ITS Program (T. Geara et al., interview, April 2022), the City of Detroit mentioned 

that their city council is adamant about protecting privacy. An ordinance came out 

a few years ago on how cameras can be used, including how long the video 

recording can be stored. The City of Detroit abides by that in their ATCMTD 

deployment and emphasized that all the data falls under the Freedom of 

Information Act. Similarly, the Missouri DOT (MoDOT) shared with the ITS JPO’s 

AI for ITS Program that per MoDOT policy, videos will be deleted immediately to 

protect privacy (E. Kopinski et al., interview, April 2022). Additionally, they use 

high-mounted freeway monitoring cameras that do not clearly show license plate 

numbers, which also helps to protect behavioral and location privacy.  
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2.6 Ethics and Equity 

Table 8. Summary of the Ethics and Equity Challenge and Potential Strategies to 

Address It 

Summary of Ethics and Equity 

What is it? When AI applications, whether intentionally or unintentionally, 

profile and discriminate against individuals/populations based on 

unfair or unclear criteria or lead to unethical or inequitable 

outcomes. 

Why does it 

matter for ITS? 

• AI-enabled ITS systems can inform, or even make, decisions

that greatly impact human lives. For example, Automated

Vehicles (AVs) could encounter major ethical dilemmas in their

driving decision making.

• Disadvantaged populations could be unfairly discriminated

against via AI-enabled ITS, negatively impacting equity. For

example, discrimination could occur in infrastructure and asset

management decisions or in language processing.

• Inequitable outcomes could occur from competing objectives or

biased data collection.

• Seemingly negligible development choices, such as spatial

resolution or sensor placement, could lead to unintentional

consequences.

How can it be 

addressed? 

• Creating AI systems with ethics, equity, and transparency at the

forefront

• Translating ethical frameworks into engineering

• Supporting workforce training and education to meet future AI

needs

• Including diverse stakeholders throughout AI development

• Promoting ethical, trustworthy AI development and use

• Applying guidelines to promote responsible AI

• Documenting processes, success metrics, and expectations

• Including a human-in-the-loop for critical decisions

Description of Challenge 

Ensuring ethics and equity in AI systems is a major challenge and focus for its 

successful implementation. This topic is wide-ranging and different aspects of it are 

covered in this report in the Bias, Security, Privacy, Explainability and Liability sections. 

Focusing on ethics and equity is important to ensure that AI systems can reach their 

maximum potential and gain public trust without inflicting harm on vulnerable 

populations, the workforce, and the public in general (Vasudevan, Townsend, et al., 

2022).  
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AI systems can inform, or even make, decisions that greatly impact human lives. 

The data that many AI systems train on can include sensitive and confidential 

information about individuals. Because of these aspects of AI, having a robust and 

integrated approach to ethics is necessary (AI World, 2021) as hackers can misuse the 

information or poison the data for making unethical decisions. Additionally, even if 

systems are not hacked, the AI applications can lead to unethical decisions. 

Disadvantaged populations could be unfairly discriminated against via AI-enabled ITS, 

negatively impacting equity. 

Jobs are already being replaced due to AI implementation. According to the IEEE 

European Public Policy Initiative 2017 statement on AI (IEEE European Public Policy 

Initiative, 2017), AI applications will continue to substitute humans in repetitive, less 

skillful work or critical tasks (such as in medicine). AI adoption can replace humans in 

tasks that are susceptible to human-error such as video monitoring for incident detection 

where a person may become tired and inattentive after hours of monitoring. AI could also 

upset existing system industries (i.e., manufacturing, energy, medical systems, etc.), 

with potential consequences in terms of jobs or economic strength in these industries 

(IEEE European Public Policy Initiative, 2017; IEEE Advancing Technology for Humanity, 

2019). 

Many organizations do not appear to have a systematic approach for cultivating 

trust among stakeholders in AI-enabled applications. Recent market research on AI 

for ITS (See Appendix A) revealed that a majority of respondents to the AI for ITS 

Sources Sought Notice (SSN) demonstrated an ability to make their systems 

transparent, while considering the legal and ethical implications, but lacked a systematic 

approach for cultivating trust among stakeholders. As one respondent noted, for gaining 

trust, it is critical for the AI system to consistently produce outputs that the system’s 

operators consider reasonable. Conversely, a single error could “foul that trust for a long 

time.” For the ethical operation of AI, the respondent noted that the AI decisions should 

minimize bias and be fair, transparent, responsible, and interpretable (Vasudevan, 

Townsend, et al., 2022). AI systems need to be explainable, with their input and process 

able to be examined to prevent the perception of a confusing and mysterious “black 

box.” Overall, most of the respondents recognized the need for building trustworthy and 

ethical AI systems but lacked systematic approaches for achieving these aims. 

The public has expressed concerns regarding fairness and acceptability with 

using AI-enabled ITS applications for critical decisions. A 2018 Pew Research 

Center survey on “Public Attitudes Toward Computer Algorithms” (Smith, Aaron, 2018) 

found that the public has expressed broad concerns about the fairness and acceptability 

of using computers for decision-making in situations with important significant real-world 

consequences. There are several themes driving these concerns. Some of the more 

prominent concerns mentioned in response to open-ended questions include the 

following: 
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• Privacy violation: This was the top concern for 26% of the respondents. For 

example, respondents found the use of personal finance scores (such as a FICO 

or credit score) unacceptable. 

• Lack of fairness: There was concern regarding the fairness of decisions 

processes. For example, there was concern regarding the fairness of automated 

screening of job applications. 

• Lack of human-in-the-loop for important decisions: This is the top concern of 

those who find the automated resume screening concept unacceptable (36%), 

and it is a prominent concern among those who are worried about the use of 

video job interview analysis (16%). 

• Inability of machines to capture nuances in human decision-making: 

Humans are complex, and AI-enabled systems are incapable of capturing 

nuances. For example, 26% of these respondents argue that every individual or 

circumstance is different and that a computer program would have a hard time 

capturing human nuances. Roughly half of these respondents mention concerns 

related to the fact that all individuals are different, or that a system such as this 

leaves no room for personal growth or development (Smith, 2018). Please also 

see the Stakeholder Perception Section for more information on this challenge. 

 

Given concerns regarding ethics and equity of AI-enabled systems and the complexity in 

assessing these aims, some agencies are working to define what it means for AI to be 

ethical. For example, federal defense agencies are beginning to define AI ethical 

principles. The U.S. Department of Defense (DOD) established AI ethical principles that 

encompass five major areas, and the U.S. Intelligence Community (IC) has committed to 

designing and developing AI based on three core principles (Defense, 2022; Office of the 

Director of National Intelligence (ODNI), 2020). The two agencies’ core areas of focus 

overlap in some respects and focus on creating ethical and equitable AI with the 

following traits:  

• Responsible: Exercise appropriate levels of judgment and care, while 

remaining responsible for the development, deployment, and use of AI 

capabilities.   

• Objective and equitable: AI will provide objective intelligence while taking 

deliberate steps to identify and mitigate unintended biases in AI.  

• Traceable, transparent, and accountable: Develop and deploy AI systems 

such that personnel possess an understanding of the technology, deployment 

process, and operational methods. This includes transparent and auditable 

methodologies, data sources, design procedures and documentation and the 

ability to identify responsibility and hold developers and users accountable for 

the system’s outcomes.  

• Human-centered development and use: Tempering technological guidance 

with human judgement, especially when an action may infringe on an individual’s 

civil rights and freedoms.  

• Reliable: AI will have explicit, well-defined uses and the safety, security and 

effectiveness of AI will be subject to testing and assurance across its life cycle.  
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• Governable: Design and engineer AI capabilities to fulfill their intended 

functions while possessing the ability to detect and avoid unintended 

consequences, and the ability to disengage or deactivate deployed systems that 

demonstrate unintended behavior. 

Implications for ITS 

Some of the ways that challenges related to ethics and equity could impact AI-enabled 

ITS applications are summarized below. 

• Inequitable outcomes from competing objectives: AI equity impacts for ITS 

potentially include impacts to modes and traffic flows (e.g., prioritizing transit 

versus vulnerable road users [VRUs] versus vehicles for an adaptive signal 

controller) to balance both throughput and various other needs. 

• Inequitable outcomes from biased data collection: Additionally, ethics and 

equity factor into ITS systems in terms of the data that is being fed into an AI 

system. For example, if an AI system for emergency response relies most heavily 

on connected vehicle data, then non-connected vehicles could be overlooked. 

Additionally, AI-enabled traffic signal applications pose ethics concerns if they are 

collecting data from a subset of the population that is not representative to build 

AI prediction algorithms. For smart intersection crossing, potential issues arise 

around omitting pedestrians that are visually impaired or that have cognitive or 

physical disabilities and who may take longer to cross a given street. If data do 

not account for all VRUs, then the prediction algorithm could end up 

discriminating against them. Using AI for workforce selection and scheduling 

requires equitable practices to ensure that the data do not contain underlying 

prejudices and can distribute workloads equitably (Vasudevan, Townsend, 

Schweikert, Wunderlich, et al., 2020). 

• Discrimination in infrastructure and asset management decisions: 

Regarding infrastructure, discrimination could occur if AI is used in making 

investment decisions regarding where to install equipment/devices for collecting 

data, for sharing information (e.g., via variable message signs), lighting, or where 

to build a road or expand the number of lanes. Infrastructure changes, such as 

equipment maintenance and roadway construction, may be unequal when 

looking at underdeveloped, underserved, or physically divided communities. 

Road-related discrimination that can be dated back to the mid-1900s is one 

example of this inequality of service, namely, the construction of expressways 

that divided and displaced minority communities in New York City (Ploschnitzki, 

2017). These communities may also be deprived of services due to lack or ease 

of accessibility compared to other parts of the area (Bornstein, 2017).  Another 

concern is asset management—discrimination could occur in prioritization of 

decision-making for maintenance and repair of pavements, bridges, tunnels, and 
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other traffic control devices; underserved populations and rural communities may 

suffer.  

• Ethics concerns in AV driving decisions: Regarding AI and automated

vehicles (AVs), potential ethics and equity issues arise around predicting

behaviors of other vehicles, drivers, and VRUs in the surrounding environment.

AI-enabled AVs may be forced to decide who is "more dispensable" when a crash

is imminent. Cybersecurity is also a large concern for AI in automated vehicles

and ITS. An attack on AI could result in loss of human life, loss or misuse of

personal data, and overall degradation of the transportation system and

communications network.

• Discrimination in language processing: AI ethics issues could arise in

language processing applications. For example, discrimination could occur if AI is

not trained on different accents or cultural differences, domestically as well as

internationally.

• Unintentional consequences from development choices: Choices made

during AI model development can greatly impact results. An example is given of

trying to predict urban heat islands and choosing the spatial resolution of the

model. Too low a resolution may overlook extreme values in small

neighborhoods, but too high a resolution may introduce noise (Board on

Atmospheric Sciences and Climate , 2022). Sensors used for AI data input often

do not cover all populations equally, and many of them require daylight (Board on

Atmospheric Sciences and Climate , 2022). This could also apply in the case of

sensor-based data collection for AI-enabled ITS applications.

Insights and Lessons Learned 

Some strategies for considering ethics and equity in AI development and deployment are 

summarized below.  

• Creating AI systems with ethics, equity, and transparency at the forefront:

AI systems may be developed to minimize bias and act without prejudice. This

goal starts with ensuring the data that a system is built on does not contain

implicit or explicit biases that could lead to model bias. During development, the

model may be tested consistently to detect and remove bias during model

building and include input from different communities who may not always have a

seat at the table. Prior to implementation, new AI systems may be tested and

demonstrated in a controlled environment to gain trust, demonstrate use, and

define the system’s purpose and boundaries. To ensure ongoing ethical use and

user and public trust after an AI system is implemented, transparency is key.

Additionally, humans can consistently verify the system to ensure performance,

explainability, and other outcomes are maintained while minimizing model drift

(Vasudevan, Townsend, et al., 2022).
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• Translating ethical frameworks into engineering: Ethical and equitable AI 

systems are both an engineering problem and a policy concern. From the initial 

design, ethical and equitable AI systems center on a diverse group of equal 

stakeholders to avoid power centralization and data practices that may exploit 

vulnerable populations (Machine Learning and Artificial Intelligence to Advance 

Earth System Science: Opportunities and Challenges Workshop, 2022). 

Established standards (e.g., IEEE P7000/P7010 “Wellbeing Metrics Standard for 

Ethical AI and Autonomous Systems”) can be used from a policy perspective to 

meet ethics goals while keeping a human-in-the-loop to monitor the performance 

of AI decision making (AI World Government In-Person & Virtual | October 18-19, 

2021, n.d.). It is helpful for engineers to understand ethics and equity when 

building AI models to retain valuable context that can be used to make ethical 

decisions (NIST, 2022). Losing this context while developing a model can create 

abstraction and governance issues. In addition, engineers are likely responsible 

for ensuring that the most high-risk applications are paired with low-risk 

technology to ensure maximum success in implementation and equity (Dunnmon 

et al., 2021). 

• Supporting workforce training and education to meet future AI needs: 

Supporting education to advance technical expertise and to retrain individuals in 

the workforce could help those whose jobs are disrupted by AI adoption. 

Designing strategies that prepare the labor force for the transition, create jobs 

that take advantage of both AI and human skills, and supplement the workforce 

with educational programs that increase technological literacy could help in 

facilitating the relationship between humans and AI (IEEE Advancing Technology 

for Humanity, 2019). Additionally, encouraging credentials for AI creators and 

operators could help to ensure they can demonstrate an appropriate level of 

knowledge in an AI system (IEEE Advancing Technology for Humanity, 2019).  

• Including diverse stakeholders throughout AI development: Involving 

multidisciplinary stakeholders, both internal and external to the entity, throughout 

an AI system’s development could help ensure that societal concerns are 

considered. In September 2020, the Comptroller General of the United States 

(CG) convened a forum of experts in industry, government, nonprofits, and 

academia to discuss factors affecting oversight of AI, including governance, 

sources of evidence, methods to assess implementation of AI systems, and 

identifying and mitigating potential bias and inequities. Forum participants 

discussed how to operationalize recent principles and frameworks on the use of 

AI into practices for managers and supervisors of these systems, as well as 

mitigation strategies to address challenges in implementing AI in the public 

sector. A participant in the forum stated: “We [built] an AI ethics board that has 

representatives from all divisions [who] can add ... decision power” (GAO, 2021). 

• Promoting ethical, trustworthy AI use and development: Inspiring trust and 

confidence in AI is important for its successful adoption. For example, the U.S. 
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Department of Health and Human Services (HHS) published its AI Strategy in 

2021 to outline its approach to promote trustworthy AI (U.S. Department of HHS, 

2021), aligned with federal directives (i.e., Executive Order 13960 and Executive 

Order 13859). According to their AI strategy, HHS aims to support divisions in 

deploying reliable, explainable, non-biased, and secure AI systems that respect 

citizens’ privacy and data security. HHS will also support divisions in developing 

policies that ensure transparency and accountability in AI use by communicating 

department-specific principles for effective, equitable, safe, secure, and ethical AI 

and data used to create and operate AI. HHS will also promote and support the 

application of existing cybersecurity frameworks to AI use cases and promote the 

evaluation of applied AI for accuracy, effectiveness, and equity. 

• Applying guidelines to promote responsible AI: Applying guidelines for what it 

means for AI to be responsible to projects and programs could help to ensure AI 

starts and continues to be responsible, ethical, and equitable. For example, the 

DoD’s Defense Innovation Unit (DIU) has Responsible AI Guidelines to 

operationalize the DoD’s Ethical Principles for AI (Dunnmon et al., 2021). From 

applying these guidelines, the DIU has identified a number of lessons learned for 

each phase of the AI development lifecycle. A few lessons during the planning 

phase include defining the task and success metric and prescribing processes to 

safely address system errors and revert malfunctioning systems back to a 

previously functioning version. A few lessons during the development phase 

include assigning the authority to make changes to the capability to a specific, 

accountable party and designing the system interface to give users the ability to 

understand how outputs are produced. Finally, a few lessons during the 

deployment phase include conducting continuous task and data validation and 

confirming that new data do not degrade system performance.  

• Documenting processes, success metrics, and expectations: AI capabilities 

cannot be used confidently without comprehensive, even-handed documentation 

(Dunnmon et al., 2021). In addition to documentation, defining success through 

key performance metrics is important to benchmark ethics and equity in AI 

systems (Dunnmon et al., 2021). AI customers and vendors could set and 

document expectations, since AI is not magic and developers should not act like 

magicians (Dunnmon et al., 2021). Additionally, different stakeholder groups 

involved in the AI project may have different working assumptions. Documenting 

these assumptions as well as expectations may help to ensure everyone is on 

the same page. Agencies may want to consider investing time and resources in 

documentation and best practices. 

• Including a human-in-the-loop for critical decisions: Bringing together AI 

expertise and human intelligence can mitigate public concerns regarding fairness 

and acceptability of AI-enabled ITS applications for critical decisions. The extent 

of human involvement in AI decision making depends on the complexity and 

exigency of automation and of the industry. For example, certain industries like 
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healthcare, will always require human domain expertise especially for medical 

diagnoses. It is a good practice to complement AI decision making with human 

intelligence.  

2.7 Generalization 

Table 9. Summary of the Generalization Challenge and Potential Strategies to 

Address It 

Summary of Generalization 

What is it? When a trained ML model does not adapt well to unseen data, it 

may have underfit or overfit its training data, which could lead to 

poor performance 

Why does it 

matter for ITS? 

• Vendors may promote their AI solutions as being able to work

anywhere, but AI solutions are not necessarily designed to work

everywhere.

• Since non-recurring conditions are far less common than

recurring conditions, they present a challenge in terms of

having enough data to train an ML model to detect and classify

them correctly.

• ML models require large quantities of representative data to

generalize well, but real-world data can be expensive to

acquire, and simulated data may not be fully representative.

How can it be 

addressed? 

• Having representative data for training

• Making the training data more robust

• Handling edge cases

• Limiting overfitting

• Combining ML techniques or models

• Using model testbeds

• Re-training for new locations

• Considering transfer learning

• Developing and using standards to enable interoperability

Description of Challenge 

Generalization refers to an ML model’s ability to adapt properly to new, previously 

unseen data, drawn from the same distribution as the one used to create the model 

(Generalization | Machine Learning Crash Course, n.d.). One of the main goals of 

developing an ML model is for it to generalize well to unseen data. Therefore, it aims to 

capture useful trends (i.e., not underfit) while ignoring meaningless, random fluctuations 

in the data (i.e., not overfit) (Chouldechova, 2017). However, it can be difficult to strike 

the right balance during development. Additionally, even if a trained model performs well 

against test data, it could still unexpectedly encounter completely new data after it is 
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deployed. For example, if the trained model encounters new traffic patterns or conditions 

(e.g., a new work zone or lane closure; new traffic patterns from a major sporting event, 

etc.) that are not representative of data that were used to develop the model, this could 

lead to poor performance. Overall, it can be challenging to transfer pre-trained models to 

new situations with different data that might fall outside the distribution used for 

development.  

Implications for ITS 

Some of the ways in which AI/ML generalization could come into play for ITS are 

summarized below. 

• Scalability and transferability of vendor AI solutions: Agencies may have to 

deal with scalability and transferability issues if investing in certain vendor 

products that are not necessarily designed to work everywhere (Vasudevan, 

Townsend, Schweikert, 2020). For example, a decision maker at a state DOT 

may want to exercise caution prior to buying an AI solution marketed by a vendor 

if the AI solution was developed for a small area within a dense urban arterial 

network. It could have challenges generalizing well to different situations. In 

general, a trained ML model will perform best on the data it was trained on. If 

new, real-world data do not follow a similar pattern as the training data, then the 

model will not perform as well, and therefore, will have less utility for the agency.  

• Inadequate data for non-recurring conditions: It can be difficult to have 

adequate data on non-recurring traffic conditions (e.g., crashes) for training an 

ML model. Even if some data are available, since crashes are rare events amidst 

regular traffic flows, the data are likely to be highly imbalanced (i.e., there are far 

fewer instances of non-recurring event records in the data set when compared to 

recurring records). Additionally, even if an ML model has seen many different 

incidents during development, each new incident is likely to look a little different 

and could have different impacts on non-recurrent traffic patterns. This could 

make it difficult for a trained model focused on identifying and classifying non-

recurring patterns to generalize.  

• Representative simulated data: ML models need large quantities of data to 

learn from, but real-world data can be expensive to collect or acquire. Simulated 

data, on the other hand, may offer a cheaper and easier alternative to work with. 

However, while simulated data tend to be relatively clean and error-free, real-

world data may not always behave so nicely. Therefore, if the simulated data do 

not fully represent possible real-world conditions, then an ML model trained on 

them may have challenges generalizing. Agencies may want to use caution when 

procuring vendor solutions that have been built primarily using simulated data. 
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Insights and Lessons Learned  

Researchers and deployers have used different strategies to improve model 

generalizability, some of which are summarized below.  

• Having representative data for training: If fewer training examples are 

provided than parameters that exist in the ML algorithm, then generalization (and 

therefore performance) may be an issue, since in this case, the algorithm 

typically memorizes the training data rather than learns useful trends (Zhang & 

van der Baan, 2021). Generalization is improved if the provided samples are 

representative, in that they describe all features of interest well. In addition to 

being representative, it is helpful for the data to be complete to prevent poor 

performance, meaning the examples span the full solution space (Zhang & van 

der Baan, 2021). To frame it another way, since an ML model is trained within the 

distribution of its training data, it cannot extrapolate beyond the bounds of those 

training data labels. For example, if an ML model is trained to classify images of 

cows, goats, and horses, then it will not be able to correctly classify an image of 

a bird. Ensuring completeness during training is challenging unless the target 

application is well understood (Zhang & van der Baan, 2021). Therefore, 

understanding the context in which the ML model will operate is key for ensuring 

the training data are representative of all possible patterns and outcomes.    

• Making the training data more robust: In some cases, the availability of robust 

training data, in terms of both quantity and diversity, may be limited. The size of 

the data is a “deciding factor” for generalization performance (Xu & Goodacre, 

2018). There are many strategies to increase the size and diversity of training 

data. For example, researchers tried a variety of up/over-sampling and data 

augmentation techniques, including Random Over Sampling, Synthetic Minority 

Oversampling Technique (SMOTE), and Adaptive Synthetic Sampling (ADASYN), 

to boost the robustness of the training data for classifying queue lengths at 

intersections, which was particularly helpful for the minority classes of queues 

with 15 or more vehicles (Vasudevan, O’Hara, Townsend, et al., 2022). However, 

to have a reliable estimation of model performance, there is a balance to be 

struck between having too few and too many samples in the training data and 

testing data (Xu & Goodacre, 2018). Additionally, if sampled or augmented too 

heavily, the training data could drift away from the actual data distribution, which 

is hopefully reflected in the held-out testing data. At a certain point, this could 

reduce model performance and generalizability.  

• Handling edge cases: Even if the training data are robust and representative, 

the AI model may still encounter edge cases, such as extreme, unexpected, or 

adversarial data inputs. Part of the challenge with these cases is that they can 

lead AI to make “silent” errors that are difficult for developers to catch. While 

inputs that are obviously faulty (e.g., of the wrong data type) can be detected and 

flagged readily, more challenging model failures could happen because data 
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preprocessing lacks context about what inputs are reasonable or expected 

(Harris, 2022). For example, a computer vision application at an intersection 

might miss a construction worker emerging out of a manhole that has not been 

cordoned off or marked as a construction zone, leading to fatalities. A stress 

testing-driven approach is one way to help manage these potential edge cases 

and reduce AI risk (Singer, 2022). By performing model stress testing during 

development, developers can observe model behavior and identify potential 

issues. In addition to designing tests, developing anomaly detection models that 

catch and flag outlier input values could help in dealing with potential silent model 

failures on edge cases (Harris, 2022).  

• Limiting overfitting: Model overfitting can lead to issues in generalization. An 

overfit model refers to a model with low bias and high variance, meaning the 

model is too closely aligned to its training data points. Overfitting can lead to low 

performance on new, unseen data in the operational environment (GAO, 2021). 

There are many techniques to help avoid overfitting, such as regularization (e.g., 

early stopping), feature selection, and using cross-validation to identify models 

with low test error (Chouldechova, 2017). 

• Combining ML techniques or models: When working with non-recurrent traffic 

conditions (e.g., incidents), it may help to leverage multiple learning techniques 

using data from multiple years (to ensure there is sufficient data) in the same 

well-defined, small area to make predictions (Qian, 2021). For example, 

unsupervised learning can be used to group/cluster non-recurrent traffic patterns 

from a wide variety of incidents so that within each group/cluster, traffic is similar 

(e.g., vehicle with flat tire on side of highway could lead to traffic shifting lanes 

and slowing down). Then, supervised learning could be used to predict traffic in 

advance within each group/cluster. Researchers at Carnegie Mellon University 

demonstrated an AI system that recommends contingency signal plans to 

accommodate non-recurrent traffic in Cranberry Township, PA by combining 

learning techniques (Yao & Qian, 2020). Specifically, they used two models for 

the plan recommendation task: real-time traffic prediction, which predicts future 

traffic flows up to 30 minutes in advance in 5 minute increments, and plan 

association, which selects and combines decision-making rules to recommend 

signal timing plans based on current and predicted traffic conditions (Yao & Qian, 

2020).  

• Using model testbeds: According to the Networking and Information Technology 

Research and Development (NITRD) Program, a formal federal program with 25 

member agencies, testbeds provide environments to support development of 

real-world applications of AI that are robust and trustworthy, including enabling 

reproducibility testing (NTRD, 2022). Developers could use model testbeds to 

test the reliability and robustness of AI systems under different real-world 

conditions without the same potential real-world consequences (e.g., safety 

concerns). The NITRD Program has an “AI R&D Testbed Inventory” page that 
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allows users to locate federally-supported testbed and testing resources that can 

support AI research (NTRD, 2021).  

• Re-training for new locations: In some cases, model generalization to new 

contexts may be infeasible or undesirable given tradeoffs with performance. 

Researchers found that training localized models (e.g., for the specific roadway 

network) may be necessary to achieve adequate performance (Vasudevan, 

O’Hara, Townsend, et al., 2022). They found that models perform best when 

trained and tuned to the specific flow and characteristics of the network. For 

example, an ML model trained to detect an incident on a freeway corridor may 

not be able to successfully detect an incident on an arterial network without re-

training the model or even considering additional features to achieve sufficient 

accuracy. They suggest that even if the two network types are similar (e.g., 

suburban freeways in two cities), that the models be re-trained to the local data 

for improved performance. 

• Considering transfer learning: One promising approach to help address 

challenges with generalization is transfer learning, in which a model that is 

trained to accomplish a certain task applies that learning to a similar but different 

task (Vasudevan, Townsend, Schweikert, 2020). Using a general-purpose pre-

trained ML model as the foundation upon which to build a more specialized ML 

model could help address generalization concerns since these models are often 

trained with very large quantities of diverse data. For example, researchers in 

collaboration with the North Carolina Department of Transportation (NCDOT) 

utilized transfer learning by adopting the Xception neural network architecture, 

which was developed by Google (Chollet, 2017), as the “feature extraction 

backbone” for their further customized roadside feature (e.g., guardrails, utility 

poles) detection solution (Yi et al., 2021). In a second example, to approximate 

pedestrian social distancing at intersections and bus stations, researchers in 

New York City used a pre-trained convolutional neural network to detect objects, 

filtered and focused it for their urban arterial context to classify objects in the 

camera view (e.g., pedestrian, bus, vehicle, bike), and then added a post 

processing filter for the distance calculations (Zuo et al., 2021).  

• Developing and using standards to enable interoperability: Since the 

availability of representative data is a key driver of generalizability, data 

standards could help enable application interoperability, and therefore, 

generalization and transferability across vendors, locations, and contexts. 

According to respondents of the USDOT’s AI for ITS Sources Sought Notice 

(SAM.Gov, 2021), standards are not sufficiently mature to allow for 

interoperability across locations or vendors. Additionally, respondents 

emphasized that common standards on data formats (both inputs and outputs) 

are needed; at present, significant calibration is required to cater an application 

to different sites (Vasudevan, Townsend, et al., 2022). 
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2.8 Model Drift 

Table 10. Summary of the Model Drift Challenge and Potential Strategies to 

Address It 

Summary of Model Drift 

What is it? When a trained model’s input data, output data, or relationship 

between the two changes over time leading to system performance 

degradation  

Why does it 

matter for ITS? 

• Model drift could lead to AI system performance degradation, 

which in turn, could reduce ITS performance and user trust.  

• Sensor malfunctions or hardware/software updates could lead 

to incorrect predictions if an AI system has not been trained on 

these occurrences.  

• If the input data in an operational setting starts to drift away 

from the data used to train the model, the performance of the AI 

system might start to degrade. For example, the introduction of 

a new ridesharing service that was not captured in the training 

data could lead to an AI-enabled traveler information system no 

longer offering the most relevant options to travelers.  

• Policy changes that impact the target variable could lead to 

concept drift. For example, if a freeway agency changes one of 

its lanes from an HOV-2 to an HOV-3, an AI-based vehicle 

occupancy detection and tolling enforcement application would 

need to be updated to learn this change or else it could 

incorrectly enforce toll rates.   

How can it be 

addressed? 

• Having a plan in place for model drift assessment and 

mitigation 

• Establishing appropriate ranges of data and model drift 

• Regularly monitoring and improving the system 

• Retraining the model 

• Considering online learning 

Description of Challenge 

Model drift (also referred to as model “decay”) refers to the changes in the relationship 

between the data inputs and the prediction outputs (GAO, 2021), which could be driven 

by data and/or concept drift.   

• Data drift: Data drift refers to the changes in the statistical properties of the input 

data in an operational environment, as compared to the training data (GAO, 

2021). Data drift often refers to changes in the predictors or independent 

variables specifically. This drift could be driven by upstream process changes in 
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data collection, data quality issues (e.g., malfunctioning sensors), or natural drift 

in the data (e.g., seasonal changes).  

• Concept drift: Concept drift refers to the changes in the statistical properties of 

the output or target variable in an operational environment, as compared to the 

training environment (Shendre, 2020). For example, when classifying incidents 

that require coordinated human-in-the-loop action across multiple agencies, the 

definition of when coordinated action is needed could change over time.  

Model drift, whether driven by data drift, concept drift, or some combination of the two, 

could lead to AI system performance degradation. If an AI system is not regularly 

monitored, model drift could occur undetected and lead to undesirable consequences.  

Implications for ITS 

Model drift could bring negative consequences to an ITS system. It could lead to 

incorrect predictions and AI system performance degradation. This performance 

degradation, in turn, could potentially lead to reduced trust from system users if the drift 

is not addressed quickly and appropriately.  

A variety of sensor, data, and policy changes could potentially lead to model drift, and 

therefore, incorrect predictions in ITS. A few possibilities and their consequences are 

summarized below.  

• Incorrect predictions from sensor malfunctions or hardware/software 

updates: A model’s input data may drift as a result of sensor device break down 

or software updates that impact how measurements are recorded (Oleszak, 

2021). This is also referred to as “covariate shift” since the distribution of the 

model inputs changes. For example, if a CCTV camera feed loses video from a 

malfunction or obstruction but continues to send footage to a computer vision 

system for queue length detection, this could lead to erroneous queue length 

predictions. The computer vision system may fail to detect any queues simply 

because it is failing to see the vehicles. Model drift may also occur because of 

sensor hardware upgrades, changes to a system, or use of hardware from 

different vendors. For example, if the model was trained on CCTV feeds from one 

vendor, incorrect predictions may be drawn if CCTVs feeds from a different 

vendor are used during the deployment phase due to potential shift in data. 

• Incorrect predictions from input data drift: If the distribution or specific 

attributes of the input data to an AI system drift from the original training data, this 

could lead to model drift and performance issues. For example, if an agency 

decides to equip an additional 15% of its bus fleet with connected vehicle devices 

and send connected vehicle messages (e.g., Basic Safety Messages) from them 

to its AI-supported traffic prediction system, the system might incorrectly predict 

an increase in traffic overall if not properly calibrated to account for the increased 
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connectivity (i.e., market penetration rate of connected vehicles). In another 

example, if there is a shift in travelers’ preferred mode choice from the 

introduction of a new ridesharing service, then an AI-enabled traveler information 

system may no longer offer the most relevant options if it does not appropriately 

account for the new ridesharing mode.  

• Incorrect predictions from policy changes: Policy changes that impact the 

outcome variable could lead to concept drift and incorrect predictions. For 

example, if a freeway management agency decides to change one of its High 

Occupancy Vehicle (HOV) lanes from an HOV-2 to an HOV-3 and it uses a 

computer vision system to classify vehicle occupancy, this could lead to 

erroneous tolling enforcement since what constitutes an HOV violation has 

drifted or changed (i.e., the meaning of the target variable has changed). The 

application would need to be updated to learn this change or else it could 

incorrectly enforce toll rates. 

Insights and Lessons Learned  

Some potential strategies and lessons learned to identify, mitigate, and address model 

drift are summarized below. 

• Having a plan in place for model drift assessment and mitigation: The 

Department of Defense, Defense Innovation Unit’s Responsible AI Guidelines in 

Practice emphasize the criticality of having a plan in place at the outset of the 

project for what to do when model drift or other issues occur. For example, if an 

automated task begins to fail or perform below a pre-determined threshold, then 

it may be necessary to revert to a manual process by trained personnel in the 

interim (Defense Innovation Unit (DIU) et al., 2021). 

• Establishing appropriate ranges of data and model drift: The GAO’s AI 

Accountability Framework suggests that entities establish the range of data and 

model drift that is acceptable to ensure the AI system produces desired results 

(GAO, 2021). The framework suggests that the ranges be established based on 

the nature, scope, and purpose of the components and the risks they pose.  

• Regularly monitoring and improving the system: Once an application is 

deployed in ITS, it is considered a best practice to regularly monitor it, evaluate 

its performance, and make improvements. For example, the FHWA Systems 

Engineering for ITS “V” Diagram, which is adapted to the broader ITS project life 

cycle, includes “Operations and Maintenance” as well as “Changes and 

Upgrades” (National ITS Architecture Team, 2007). Additionally, Chapter 18 in the 

FHWA Freeway Management and Operations Handbook focuses on effective 

performance measurement, monitoring, and evaluation that includes regular 

monitoring of the data and system (Hatcher et al., 2017). Similar to other ITS and 

freeway projects, regular monitoring and improvement are necessary for AI 
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applications deployed in ITS. Having a robust set of regularly scheduled tests 

can help with monitoring model drift and is considered a best practice by the DIU 

Responsible AI Guidelines in Practice. These tests can help inform whether drift 

has occurred, inform if the AI capability is performing sub-optimally, and help with 

diagnosing the problem (Defense Innovation Unit (DIU) et al., 2021). Upgrades 

may need to be made more frequently to an AI system whose data, scale, and/or 

role is expected to grow or change over time. Rather than launching a fully 

trained AI system immediately, the Tennessee DOT (TDOT) is taking an additive 

approach to their AI system development and deployment (L. Smith et al., 

interview, April 2022). To start, the AI system, which will suggest strategies for 

TMC operators to implement amidst incidents, heavy congestion, and other 

events, will use data from microsimulation modeling. Then, it will use real world 

data and results from operator feedback to try and improve its performance, 

while adhering to safety critical rules. TDOT plans to have their system 

continuously learn in-the-loop based on the initially deployed rule-based system 

and feedback on whether TMC operators accept or reject the AI system’s 

recommendations (L. Smith et al., interview, April 2022).   

• Retraining the model: Entities may need to retrain the components of the AI 

system if the data or model drift for each component exceeds the established 

acceptable range (GAO, 2021). It is considered good practice to regularly 

monitor the incoming data and retrain the model on newer data if the data 

distribution has deviated significantly from the original training data distribution 

(Amazon Web Services, Inc., n.d.). If there are high overhead costs associated 

with monitoring the data to detect a change in the distribution, then a simpler 

strategy may be to retrain the model periodically (e.g., weekly or monthly) 

(Amazon Web Services, Inc., n.d.).  

• Considering online learning: In contrast to training a model on a complete set 

of data (i.e., batch learning), online learning is a form of machine learning for 

data arriving in a sequential order, where a learner aims to update the best 

predictor for future data at every step (Hoi et al., 2018). In the online learning 

case, the predictive model can be updated instantly for any new data instances. 

This could be an especially useful approach in cases with large data that arrive 

quickly (e.g., continuous streams of new data) (Hoi et al., 2018). While online 

learning may help to prevent against model drift, it may also bring new risks since 

the model is constantly changing. For example, neural networks have a tendency 

to forget what they learned in the past in an online learning setting since the 

weights are updated after each sample is received and then the sample is 

discarded (Lo & Ghiassian, 2019).  
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2.9 Explainability 

Table 11. Summary of the Explainability Challenge and Potential Strategies to 

Address It 

Summary of Explainability 

What is it? Inability of an AI system’s process and decisions to be understood 

by system operators or end users 

Why does it 

matter for ITS? 

• Explainability is especially important for safety-critical and other

high-stakes decisions with greater risk and liability concerns for

the agency.

• The level of explanation required for an AI-enabled decision

support system depends on the task at hand and level of

supervision from the ITS decision maker.

• If a vendor’s AI solution is not transparent and explainable, this

could reduce agency and user trust in the overall procured

system.

• Even simple explanations for AV decisions could improve driver

and pedestrian interaction with and trust of the AV.

How can it be 

addressed? 

• Understanding potential tradeoffs between interpretability and

performance

• Balancing explainability with security and privacy

• Improving transparency through documentation

• Using interpretable models

• Engineering interpretable features

• Outputting multiple performance metrics

• Visualizing results

• Exploring post-hoc explainable AI (XAI) methods

• Using explainable AI (XAI) analysis for validation of model

strategies and to improve trust in AI outcomes

• Considering non-AI alternatives

Description of Challenge 

Many ML models are complex and can be difficult to interpret (i.e., are often labeled as 

“black box” in nature) since their process for reaching a decision is not straightforwardly 

interpretable by system operators or end users, making it hard to understand how a 

decision was made. Reducing risk from AI relies in large part on designing algorithms 

that are “explainable” (Chenok, 2020). Explainability (also referred to as “interpretability”) 

is a key component of trustworthy AI and is focused on answering the question: Can the 

system’s outcome be justified with an explanation that a human can understand and/or 

that is meaningful to the end user (Wing, 2022)? If the answer is no, then this 

inscrutability can hamper users’ trust in the system, especially in contexts with significant 
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consequences, and therefore lead to rejection of the system overall (Rai, 2020). 

Additionally, this opaqueness can make it difficult to discover underlying algorithmic 

biases.  

The National Institute of Standards and Technology (NIST) proposes four principles for 

explainable AI, which are centered around the humans that consume the explanations 

(Phillips et al., 2021):  

• Explanation: A system delivers or contains accompanying evidence or reason(s) 

for outputs and/or process. 

• Meaningful: A system provides explanations that are understandable to the 

intended consumer(s). 

• Explanation accuracy: An explanation correctly reflects the reason for 

generating the output and/or accurately reflects the system’s process.  

• Knowledge limits: A system only operates under conditions for which it was 

designed and when it reaches sufficient confidence in its output.  

Implications for ITS 

Some of the ways in which AI/ML explainability could come into play for ITS are 

summarized below. 

• Safety-critical and other high-stakes decisions: Explainability may be 

especially important for safety-critical decisions (e.g., wrong-way driving and 

pedestrian detection and response; emergency management) and other 

decisions in ITS with potentially severe consequences and/or liability concerns. 

For high stakes decisions, one might want to avoid a black-box model, unless it 

can be proven that an interpretable model does not exist with the same level of 

accuracy (Rudin, 2019). The Defense Innovation Unit’s Responsible AI 

Guidelines in Practice emphasizes that “AI systems cannot be responsible for 

outcomes – humans must always bear responsibility,” and humans, not 

machines, should make decisions that affect a person’s quality of life (Defense 

Innovation Unit (DIU) et al., 2021).  

• Decision Support Systems: As part of the Defense Advanced Research 

Projects Agency (DARPA) Program on Explainable AI (XAI), researchers 

conducted user studies and found that “different user types require different types 

of explanations” and “user cognitive load to interpret explanations can hinder 

user [task] performance” (Gunning et al., 2021). These insights could apply in the 

case of AI-enabled decision support systems in ITS. For example, AI could 

suggest Transportation Systems Management and Operations (TSMO) strategies 

during the planning stage, but a Traffic Management Center (TMC) operator or 
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decision-maker would still play a crucial role in vetting the AI-generated 

recommendations (Vasudevan, Townsend, Dang, et al., 2020). The Tennessee 

DOT (TDOT), as part of their ATCMTD deployment, is preparing to deploy an AI 

system that suggests strategies to TMC operators amidst incidents or heavy 

congestion. However, in speaking to the AI for ITS Program (L. Smith et al., 

interview, April 2022), one researcher supporting the project emphasized the 

difficulty in training human operators to use an AI system when that system 

cannot explain its decisions. Therefore, they are taking an incremental 

development and deployment approach to ensure operator awareness and 

understanding of the system, rather than doing a wholesale swap of the existing 

rule-based system with a fully trained AI system. There is likely a balance to be 

struck between too few and too many details, particularly when providing outputs 

(i.e., decisions and explanations) to decision makers. The type of explanation 

(and its level of detail) deemed appropriate for the situation will depend on the 

requirements of the given situation, the task at hand, the consumer, and the 

decision maker(s) (Phillips et al., 2021). If an explanation of the AI system’s 

decision is not possible or is too difficult to make sense of, then the overall task 

could be hindered.  

• Vendor transparency: As one speaker at AI World Government 2021 put it “AI is 

not magic, and vendors should not act like magicians. They must reveal their 

tricks” (AI World Government In-Person & Virtual | October 18-19, 2021). 

Transportation agencies might want to keep this in mind when looking to procure 

AI solutions from vendors. Agencies might want to understand how vendor 

systems are operating and how decisions are made. If the data, methods, and 

processes are not disclosed by the vendor and decisions are not explainable, 

then the agencies might find it difficult to explain the reasoning behind the 

decisions to decision makers and stakeholders, leading to mistrust in the AI-

suggested decisions and system. In speaking to the ITS JPO’s AI for ITS 

Program about their ATCMTD deployment (T. Geara et al., interview, April 2022), 

the City of Detroit shared that they expect their computer vision vendor to 

validate its model’s performance. However, the city makes sure the vendor 

conducts sufficient testing and validation. Additionally, the city asked for an 

explanation in cases where the model was behaving strangely or performing 

poorly. For example, in one case the computer vision system for traffic counts 

was showing a high error rate because it was counting cars on truck carriers as 

additional traffic near a facility that assembles vehicles.  

• Automated Vehicles: According to NIST, the “Knowledge Limits” principle of 

explainable AI states that systems identify cases in which they were not designed 

or approved to operate, or in cases for which their answers are not reliable. This 

principle can increase trust in a system by preventing misleading, dangerous, or 

unjust output (Phillips et al., 2021). For example, according to SAE standard 

J3016 “Levels of Driving Automation” (SAE Levels of Driving AutomationTM 

Refined for Clarity and International Audience, n.d.), a Level 3 automated vehicle 
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(AV) uses AI to make dynamic driving decisions within its operational design 

domain unless it encounters a situation in which it requests the human to take 

control (e.g., system uncertainty or failure). Notifying the driver of why it is 

necessary to take control of the vehicle could aid in explainability. For example, if 

the Level 3 AV encounters a floating plastic bag on the road, it could audibly 

and/or visibly alert the driver with “unknown object ahead, please take control.” 

Not only could additional information be helpful to drivers and passengers, but it 

could also be helpful for pedestrians. For example, researchers in Germany 

compared the effectiveness of various vehicle-pedestrian communication 

implementations in AVs and found that AVs issuing a “high-content” message of 

“I’m stopping, you can cross” were rated as being the most trustworthy and 

reassuring by a focus group of pedestrians with vision impairments (Colley et al., 

2020).  

Insights and Lessons Learned  

Explainability is a complex topic in AI that continues to garner increased attention. Some 

of the strategies and lessons learned to support explainability are summarized below.  

• Understanding potential tradeoffs between interpretability and 

performance: There is generally a tradeoff between model interpretability and 

flexibility. While highly structured models, such as linear and logistic regressions 

and decision trees, tend to be easy to interpret, highly flexible (i.e., more 

complex) models, such as random forests and deep neural networks, tend to do 

a better job at prediction (Chouldechova, 2017). Depending on the use case, a 

more interpretable/explainable model may be preferred over a higher performing 

“black box” model. Sensitivity analysis might help decision makers choose their 

preferred approach. For example, a logistic regression model might only show 

marginally lower performance (e.g., accuracy) compared to a deep neural 

network to predict binary transportation mode choice (i.e., transit or not) but 

might offer a far simpler model and greater interpretability regarding how the 

model is categorizing the two. If the model is not too complex, then not only could 

it make predictions of mode choice, but also be useful in understanding which 

features are important for predicting mode choice (e.g., distance to nearest 

station, age, etc.).  

• Balancing explainability with security and privacy: While explainable AI could 

bring new opportunities and potential benefits, it also introduces new threats to a 

system (Phillips et al., 2021). A potential negative consequence of having an 

explanation along with the AI output is the exposure of model details (Milli et al., 

2018). 

• Improving transparency through documentation: A simple and accessible 

approach to increasing transparency in ML lifecycles is through an improvement 

in both internal and external documentation. Documenting key decisions across 
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the AI lifecycle can improve explainability and help users, auditors, and 

stakeholders understand the AI system (GAO, 2021). According to ABOUT ML 

(Annotation and Benchmarking on Understanding and Transparency of Machine 

Learning Lifecycles) led by the Partnership on AI, this documentation process 

begins in the ML system design and set up stage, including system framing and 

high-level objective design (ABOUT ML, n.d.).  

• Considering system auditability: Developing and deploying AI systems such 

that personnel possess an understanding of the technology, deployment process, 

and operational methods could help support explainability. This includes 

transparent and auditable methodologies, data sources, design procedures, and 

documentation (Defense, 2022). Additionally, planning for regular system auditing 

is one of the DIU’s Responsible AI Guidelines for the development phase. 

Models can be audited in multiple ways, ranging from internal code and training 

process reviews to fuzzing (i.e., a form of negative testing to surface 

vulnerabilities) and deterministic testing (Defense Innovation Unit (DIU) et al., 

2021). Overall, an AI system that is auditable by different entities, whether the 

government or a third party, is more likely to be transparent and explainable. 

Appendix V of the GAO’s AI Accountability Framework describes key auditing 

standards that could be considered by auditors and audited entities to ensure 

accountability (GAO, 2021).  

• Using interpretable models: Some models are inherently interpretable. These 

include decision trees and regression models, among others. According to NIST 

researchers, not only can these “self-interpretable models” explain the entire 

model globally, but they can also explain individual decisions locally (Phillips et 

al., 2021).    

• Engineering interpretable features: Some features are more understandable 

by system operators or end users than others. For example, bus occupancy, trip 

duration, and time of day are human-interpretable features while a sparse matrix 

of text token counts often used in natural language processing (NLP) is not. 

Having interpretable features can be helpful even when the model itself is not 

inherently interpretable. For example, while a random forest classifier’s decisions 

can be difficult to interpret, if the model uses human-interpretable features then 

the “feature importances” could help with model explainability (Feature 

Importances with a Forest of Trees, n.d.).   

• Outputting multiple performance metrics: Different performance metrics can 

share different insights into how the model is correctly, and perhaps even more 

importantly, incorrectly determining its classifications or predictions. Panelists on 

the “Technical Characteristics of AI System Trustworthiness” panel at the NIST AI 

Risk Management Framework Workshop emphasized the importance of 

understanding and interpreting multiple AI performance metrics (e.g., accuracy, 

false positive rate, false negative rate, precision, recall) (Kicking off NIST AI Risk 
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Management Framework, 2021). For example, accuracy may not be the most 

informative performance metric, particularly in cases with imbalanced data since 

the model could classify most, if not all, observations in the majority class without 

reducing overall model accuracy by much. Additionally, the false positive and 

false negative rates provide insight into a model’s misclassifications. In some 

cases, the risks of a false negative may be higher than a false positive, and vice 

versa. Being transparent about these metrics could aid in AI explainability.  

• Visualizing results: According to some AI for ITS SSN respondents, visual 

displays of AI results (e.g., dashboards, GIS maps) could help enable 

interpretation (Vasudevan, Townsend, et al., 2022). For example, when predicting 

bottlenecks in the system, it could be helpful to display the results as dynamic 

congestion heatmaps. Additionally, simply outputting confidence scores along 

with the ML classifications could provide some insight into how the model is 

categorizing objects in a computer vision application (e.g., bus, bike, pedestrian).   

• Exploring post-hoc explainable AI (XAI) methods: A body of ongoing work 

currently seeks to develop and validate explainable AI methods (Phillips et al., 

2021). A few post-hoc explanation methods mentioned by the NIST Explainable 

AI authors include LIME (Local Interpretable Model-Agnostic Explainer), SHAP 

(Shapley Additive ex-Planations), ICE (Individual Conditional Expectation), and 

Partial Dependence Plots (PDPs). While established decision accuracy metrics 

exist, researchers are in the process of developing performance metrics for 

explanation accuracy (Phillips et al., 2021). 

• Using explainable AI (XAI) analysis for validation of model strategies and to 

improve trust in AI outcomes: Although still a nascent field, explainable AI 

analysis can help alert practitioners if their systems are using data in a way 

contradictory to the proposed use case. For example, XAI software can produce 

heat maps on top of the images of objects they were meant to detect and label, 

showing exactly what parts of the image were most important to the classification 

algorithm (Turri, 2022). If, in the example of highway crash images shared above, 

the XAI showed that emergency vehicles were a pertinent feature in 

classification, the practitioner would identify the undesired strategy and begin the 

process of remediation of the dataset. Being able to explain outcomes of AI 

algorithms also can help improve public trust by reducing the extent to which 

systems are “black boxes” – programs whose logic cannot be seen or interpreted 

by system operators or end users. For more information on this topic, please see 

the Stakeholder Perception Section. 

• Considering non-AI alternatives: In some cases, AI may not be the optimal 

approach for a given task, particularly if the task requires complete transparency, 

interpretability, and explainability (Defense Innovation Unit (DIU) et al., 2021).  
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2.10 Liability 

Table 12. Summary of the Liability Challenge and Potential Strategies to Address It 

Summary of Liability 

What is it? Lack of clear definition of who is liable when a vehicle, device, 

equipment, or system that uses AI is involved in a crash, is hacked, 

or produces erroneous results (e.g., misclassifies vehicle 

occupancy) 

Why does it 

matter for ITS? 

• If the AI application fails due to bias in the data, it is currently

unclear whether the liable party for the failure is the application

developer or the data provider

• Liability is unclear when a vehicle, device, equipment, or

system that is powered by an AI application is involved in a

crash or results in fatalities.

• Lack of clarity of safety expectations may regarding the

damages that results from cybersecurity breaches in an AI

product.

• If an AI-enabled application has poor performance resulting in

significant productivity losses, it is unclear who should be held

accountable.

How can it be 

addressed? 

• Partnering closely with agency risk management teams to

consider legal and compliance issues from the perspective of

organizational experts.

• Assessing legal restrictions for the data to establish contracts

and agreements in ways the data should be collected and

used.

• Assessing legal restrictions for the AI algorithm to establish

contracts and agreements on all aspects of algorithm use and

ownership.

• Identifying possible risks throughout the AI pipeline, including

considering downstream uses of AI system outputs.

• Maintaining human accountability by assigning responsibility for

AI system outcomes on specific individuals and organizations.

Description of Challenge 

The ability for AI to make predictions and produce results that inform decisions creates 
preconditions for potential damage caused by its actions. Thus, issues arise with respect 
to liability and compensation that may or may not be covered under existing legal 
provisions. A key issue is that under current national law, AI is not recognized as a 
subject of law. This means that any potential damages caused by an AI system cannot 
be held personally liable (Čerka et al., 2015). Because of this lack of clarity, the question 
of who is responsible for damaging outcomes of AI systems remains an open one. 
(Čerka et al., 2015). 
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The Federal Trade Commission (FTC) offers some discussion in how AI algorithms 
might be treated by US law (Smith, 2020). Firstly, consumer transparency is key to 
liability protection. The FTC warn if used to mislead consumers, AI that spoofs human 
interaction such as AI chatbots or deepfakes may be liable to face FTC enforcement 
action. Similarly, lack of transparency with consumers when collecting sensitive data can 
prompt FTC action. Secondly, decisions that are explainable to the consumer are 
another factor. If using algorithms to assign risk scores or allocate resources to 
consumers or communities, the AI system owner ought to be able to disclose key factors 
that affect that score. Finally, the fairness of decisions made by the algorithm is an 
important consideration. Federal equal opportunity laws, such as the ECOA and Title VII 
of the Civil Rights Act of 1964, could be relevant in cases where AI might result in 
discrimination against protected classes. This includes not just inputs to models, but also 
unequal outcomes. 

The European Commission has been considering this question and other key questions 

surrounding liability for AI for a number of years. According to the most recent version of 

its “Report on the Safety and Liability Implications of Artificial Intelligence, the Internet of 

Things, and Robotics” (European Commission, 2020), emerging digital technologies like 

AI, challenge aspects of existing liability frameworks and could reduce their 

effectiveness. Some key challenges regarding liability in AI applications that are 

mentioned in the European Commission’s report are summarized below.  

• Difficulty in tracing damage back to human behavior: Due to the complexity

of AI technologies, it can be very difficult to trace the damage back to a human

behavior. Therefore, it can be difficult for victims to identify the liable person and

prove all necessary conditions for a successful claim. This means that liability

claims based on national laws may be difficult or overly costly to prove and

consequently victims may not be adequately compensated (European

Commission, 2020).

• Difficulty in understanding the algorithm and data used by AI:

Understanding the algorithm and data used by AI requires analytical capacity and

technical expertise that victims could find prohibitively costly. Additionally, access

to the algorithm and data could be impossible without cooperation from the

potentially liable party. Therefore, victims may struggle to make a liability claim.

• Legal complexity from AI interacting with traditional technologies: Products

and services relying on AI will interact with traditional technologies, leading to

added complexity in terms of liability. For example, automated vehicles will share

the road with traditional ones for a certain time. Similar complexity of interacting

actors will arise in some services sectors (such as traffic management and

healthcare) where partially automated AI systems will support human decision-

making (European Commission, 2020).

• Legal complexity from the plurality of actors involved: Combining different

digital components in a complex ecosystem and the plurality of actors involved
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can make it difficult to assess where a potential damage originates, and which 

person is liable for it. The costs for this assessment may be economically 

prohibitive and discourage victims from claiming compensation.  

• Legal complexity from AI autonomy: Autonomy brings an additional level of

legal uncertainty and complexity. It would be unclear how to demonstrate the

fault of AI acting autonomously, or what would be considered the fault of a person

relying on the use of AI. Autonomy may alter a product’s characteristics

substantially and affect its safety. It remains a question under what conditions

self-learning features prolong liability of the producer and to what extent should

the producer have foreseen certain changes (European Commission, 2020).

These and other characteristics of AI operating within existing legal frameworks make 

liability an ongoing challenge.  

Implications for ITS 

A recent issue of a popular computing journal asked which laws would apply if an AI-

enabled self-driving car killed a pedestrian. The paper considers the question of legal 

liability for artificially intelligent computer systems. It discusses whether criminal liability 

could ever apply; to whom it might apply; and, under civil law, whether an AI program is 

a product that is subject to product design legislation or a service to which the tort of 

negligence applies. The issue of sales warranties is also considered. A discussion of 

some of the practical limitations that AI systems are subject to is also included (Čerka et 

al., 2015). 

• Unclear responsibility for bias: If the AI application fails due to bias in the data,

it is currently unclear whether the liable party for the failure is the application

developer or the data provider (Vasudevan, Townsend, Schweikert, et al., 2020).

For example, if a computer vision-based pedestrian detection system fails to

recognize all pedestrians (e.g., pedestrians in wheelchairs), then the system

could jeopardize the safety of these individuals and others on the roadway,

leading to potential liability issues for the overseeing agency. The GAO’s AI

Accountability Framework mentions that according to a forum participant, some

entities are discouraged from collecting protected class data (e.g., sex, race,

age) or taking steps to mitigate bias, because doing so may raise risks

associated with anti-discrimination liability. Instead, these entities prefer to remain

unaware because they consider this the safest way of proceeding (GAO, 2021).

• Unclear responsibility for fatalities and crashes: Liability is unclear when a

vehicle, device, equipment, or system that is powered by an AI application is

involved in a crash or results in fatalities (Vasudevan, Townsend, Schweikert, et

al., 2020). If an AI-enabled automated vehicle is involved in an accident, the

liability is presently unclear. The vehicle manufacturer could be held liable or

alternatively the user of an AI-based tool could be responsible for decisions made
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by the tool (NIST, 2022). Uncertainty surrounding fault for damage could 

discourage investment as well as increase information and insurance costs for 

producers and other businesses in the supply chain (European Commission, 

2020). 

• Unclear responsibility for cybersecurity breaches: It is currently not clear

what the safety expectations may be regarding the damage that results from

cybersecurity breaches in an AI product and whether such damage would be

adequately compensated (European Commission, 2020). Because of the

multitudes of data used in machine learning systems, agencies risk more

exposure to higher impact cybersecurity breaches. Potentially sensitive

information might be leaked about many people. For more discussion, please

see the Security and Privacy Sections.

• Unclear responsibility for poor performance: If an AI-enabled application has

poor performance resulting in significant productivity losses, it is unclear who

should be held accountable. For instance, who would be responsible in the case

of an AI algorithm implemented for freight routing optimization that made

suboptimal decisions resulting in unreliable freight deliveries. The answer is

debatable and likely context dependent (Vasudevan, Townsend, Schweikert, et

al., 2020).

These and other questions regarding liability are important for security, privacy, and 

other considerations.  

Insights and Lessons Learned 

Some potential strategies and lessons learned to avoid and address AI liability concerns 

are summarized below. 

• Partnering closely with agency risk management teams: Consider including

legal, compliance, records management, classification, civil liberties, and privacy

professionals to understand governing authorities, legal obligations, information

management responsibilities, and risks associated with an AI project (Office of

the Director of National Intelligence (ODNI), 2020).

• Assessing legal restrictions for the data: This includes establishing authority,

agreements, contracts that govern the collection or acquisition of all sources of

data related to an AI model. In addition to arranging the technical aspects of data

governance, this process could determine what legal or policy restrictions exist

on the data (Office of the Director of National Intelligence (ODNI), 2020).

• Assessing legal restrictions for the AI algorithm: This includes what

authorities or agreements apply to the AI algorithm itself, including the use,

modification, storage, retrieval, access, retention, and disposition of the AI
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algorithm. The agency also may want to consider determining if there are any 

proposed downstream applications of the AI that are legally restricted from using 

the underlying data (Office of the Director of National Intelligence (ODNI), 2020). 

• Identifying possible risks throughout the AI pipeline: This includes

determining whether combining data with other outputs from the AI application

creates new legal, records management, or classification risks relating to how the

information is maintained and protected. For example, data covered under the

Privacy Act should only be used for a purpose compatible with the reason for

which the data was collected (Office of the Director of National Intelligence

(ODNI), 2020).

• Maintaining human accountability: Accountability in AI ensures the designers

and developers are responsible for abiding by the goals and objectives laid out in

any governance charter and enforces liability through a chain of command that

makes certain the systems operator oversees algorithm decisions. Saying a

specific decision was made because an algorithm recommended a certain

course of action is not a satisfying answer for either the public or regulators. In

the end, specific people and organizations need to be held accountable (David

Sweenor, 2021). The DIU’s Responsible AI Guidelines in Practice suggests

assigning a “responsible mission owner” who is accountable for ensuring that the

capability meets operational, organizational, and ethical requirements. In

addition, it is suggested that the mission owner work in consultation with legal

counsel to ensure an AI system is developed in compliance with all relevant laws

and regulations (Defense Innovation Unit (DIU) et al., 2021).

2.11 Talent/Workforce Availability 

Table 13. Summary of the Talent/Workforce Availability Challenge and Potential 

Strategies to Address It 

Summary of Talent/Workforce Availability 

What is it? When there is lack of talent/expertise in building trustworthy, 

ethical AI algorithms, or integrating, operating, and 

maintaining real-world AI-based systems 
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Summary of Talent/Workforce Availability 

Why does it matter for 

ITS? 

• Workforce talent and education are key bottlenecks to

successful deployment and integration of AI systems into

the operations of government agencies.

• Domain experts in the transportation industry often do not

have sufficient AI knowledge to work alongside data

scientists in building models that are relevant and

operationally useful.

• Due to budget limitations, agencies have limited staff to

operate and maintain AI-based systems. Therefore,

balancing hiring decisions between ML/AI expertise and

domain expertise can be a challenge.

How can it be 

addressed? 

• Improving diversity in the workforce, and balancing AI

talent and domain expertise to overcome challenges

related to limited resources

• Collaborating with partners for AI expertise

• Providing client training to make deployment smoother,

leading not only to improved technical proficiency of

personnel but also buy-in for AI-enabled systems

• Conducting periodic education and training for current

staff, new hires, and domain experts, so they can keep up

with advances in AI

Description of Challenge 

Many new jobs are requiring that employees interface with AI systems as part of their 

duties (IEEE European Public Policy Initiative, 2017). However, a lack of workforce talent 

and relevant education in AI are often cited as key bottlenecks to successful deployment 

and integration of AI systems into the operations of government agencies. Lack of talent 

was found to be the number one obstacle to deploying AI by government agencies (AI 

World Government In-Person & Virtual | October 18-19, 2021). Thus, there exists a 

lack of workforce expertise, especially in the public sector, in understanding the 

strengths, weaknesses, and risks (e.g., security, privacy, bias, liability risks) of AI. 

Technicians in the field today have to have a wide array of knowledge on not only 

transportation operations, but also on advanced IT systems, networking, security, etc., 

which likely requires additional training. Additionally, decision makers are often not 

trained to be able to understand the policy and ethical issues related to AI. Lack of 

expertise in AI could potentially result in agencies blindly accepting unrealistic claims by 

vendors of AI products (Vasudevan, Townsend, et al., 2022). Although more universities 

are offering degrees in analytics and even AI, many graduates are still finding 

themselves unprepared for working with AI systems at enterprise scales (Machine 

Learning and Artificial Intelligence to Advance Earth System Science: Opportunities and 

Challenges Workshop, 2022). 
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In addition, domain experts in transportation and complementary fields (e.g., data 

science, cybersecurity, computer science) are needed to work alongside data 

scientists in building AI models that are relevant and operationally useful. Domain 

experts, having knowledge and understanding of the essential aspects of a specific field, 

are essential. This is because the process of discovery and evaluation for AI systems 

development is guided by an intuitive knowledge of what has value, both in terms of 

input and output, a deep understanding of the underlying theory for classes of 

algorithms, and of what makes contextual sense (Colleen McCue, 2007). While an 

automated system can analyze and forecast events on its own, humans are needed to 

interpret the results, provide the best courses of action, and shape the AI model (Jamie 

Butler, 2016). Speakers from the ML/AI to Advance Earth System Science workshop 

stated that: “Many times, practitioners are very strong in computer science but struggle 

with fundamental aspects of data organization. Many have trouble operationalizing/ 

automizing data at enterprise scale. Additionally, many employees have issues with 

streaming data because they usually study fixed data in university” (Machine Learning 

and Artificial Intelligence to Advance Earth System Science: Opportunities and 

Challenges Workshop, 2022). 

Due to budget limitations, agencies have limited staff to operate and maintain AI-based 

systems, therefore balancing hiring decisions between ML/AI expertise and domain 

expertise can be a challenge. Often, they need to decide which side is easier to train. 

The first option is hiring domain experts who might be able to use ML tools as an off-the-

shelf product, but do not intimately know advantages, constraints, and interpretations of 

ML techniques. The other option is hiring professionals with computer science 

backgrounds who are well versed in the ML but lack domain knowledge (Machine 

Learning and Artificial Intelligence to Advance Earth System Science: Opportunities and 

Challenges Workshop, 2022).  

Implications for ITS 

Key implications of lacking AI-related talent and workforce availability for ITS are 

summarized below. 

• Traditional engineers and system operators lacking AI training: Traditional

ITS systems are typically managed and operated by engineers with a civil

engineering background and limited awareness of AI techniques. Even as AI is

becoming more prominent in many fields of study, civil engineering degree

programs have not started including basic AI concepts. With a basic

understanding of AI or ML concepts, engineers and system operators can provide

guidance to data analysts and ML engineers of what parameters are relevant to

an ITS scenario. This can help expedite ML application development. According

to recent market research on AI for ITS (Vasudevan, Townsend, et al., 2022),

training clients on data collection for AI model development was challenging.

Agency capacity to implement and monitor AI-based systems is limited. There

have been instances where the agency staff, due to a lack of familiarity with the
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requirements of automated AI applications, would make changes to the data 

without notifying the AI team, causing the automated data processing steps to 

abort (Vasudevan, Townsend, et al., 2022). 

• Data scientists lacking background in transportation and ITS: Data 

scientists and those trained to develop AI-enabled applications do not 

traditionally have a background in transportation management. Development of 

new AI systems will require workforce training for developers, data scientists, and 

engineers. Data analysts may be able to pull insightful information from a dataset 

to be used to train an ML model. However, data analysts may not fully 

understand what features to include or the dynamic nature of transportation. For 

predicting queues at an intersection as an example, not including traffic flows on 

adjacent facilities due to a lack of knowledge of how traffic propagates could 

result in poor prediction accuracies. The data may be useful, but in the context of 

ITS, it is also important to understand the relevance of the parameters of the 

model being trained. For example, both weather and traffic flows are critical 

parameters for an incident prediction model. Without these relevant parameters, 

data analysts not knowing these operational conditions for the network would not 

train models correctly. 

• Budget and staff limitations: Due to budget limitations, agencies have limited 

staff to operate and maintain AI-based systems. For example, a speaker at the 

2021 Annual Meeting of the Transportation Research Board noted that there is a 

lack of sustainable funding to support professional staff with expertise in both the 

domains of traffic engineering and AI system development. Traffic engineering 

domain experts are needed to prune and develop training data that carry 

localized information, but the workforce is limited with 1 engineer per 250-500 

signals (TRB Annual Meeting, 2021). Given these limitations, agencies often 

procure AI solutions from vendors. For example, in speaking to the ITS JPO’s AI 

for ITS Program about their ATCMTD deployment (T. Geara et al., interview, April 

2022), the City of Detroit mentioned that they do not have the resources to hire 

their own technology staff, so they rely on the technology provider/vendor to 

develop and deploy their solution, validate the data, and update the model when 

inconsistencies are found. Additionally, the Missouri DOT (MoDOT) shared with 

the ITS JPO’s AI for ITS Program that they have many vendors involved in the 

AI/ML components of their ATCMTD deployment (E. Kopinski et al., interview, 

April 2022). Due in large part to the many vendors involved in different parts of 

the project, it has taken MoDOT longer to deploy the technology than they 

expected.  

Insights and Lessons Learned  

Some of the approaches for potentially overcoming the challenge of lack of talent and 

workforce availability are summarized below. 
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• Improving diversity in the workforce: Too often when organizations seek to 

hire talent in the AI space, they assume they should focus on a small cohort of 

schools. AI systems learn from examples, so it helps to have a diverse team that 

can bring different lenses to a problem and identify appropriate datasets for 

training AI models. It naturally follows that assembling a team with different 

backgrounds that can speak to different aspects of the problem will result in a 

better selection of datasets (Dzombak, Rachel & Palat, Jay, 2021). Creating 

diverse environments could also encourage learning and opportunities for 

collaboration. This way, even with limited resources, organizations can overcome 

the challenge of balancing AI talent and domain expertise to a problem and 

identify appropriate datasets for training AI models. It naturally follows that 

assembling a team with different backgrounds that can speak to different aspects 

of the problem will result in a better selection of datasets (Dzombak, Rachel & 

Palat, Jay, 2021). For example, as mentioned in the Bias Section, including a 

diverse team to develop an AI system will help with minimizing or detecting 

intentional and unintentional biases while collecting data, for feature selecting, 

building the AI-model, and making decisions. Creating diverse environments 

could also encourage learning and opportunities for collaboration. This way, even 

with limited resources, organizations can overcome the challenge of balancing AI 

talent and domain expertise. 

• Collaborating with expert partners: In some cases, particularly given budget 

and staff limitations, it may make sense for an agency to partner with others for 

AI expertise. For example, in speaking to the ITS JPO’s AI for ITS Program, the 

City of Detroit mentioned that they have become more involved with university 

collaborations to help manage advanced AI tasks and analytics for various 

projects and evaluations (T. Geara et al., interview, April 2022). In one case, the 

city worked with Wayne State University to develop a method to predict COVID 

case rates a week in advance based on recent traffic volumes collected from the 

ML-based Automated Traffic Signal Performance Measure (ATSPM) data 

collection system deployed and weather data using a deep learning model with 

long short-term memory networks. In another case, as part of the U.S. DOT 

Automated Driving System (ADS) Demonstration Program, the city is 

collaborating with the University of Michigan to test a self-driving shuttle that uses 

AI to navigate driving scenarios within a neighborhood to help mobilize senior 

citizens and people with disabilities in reaching places of interest.  

• Providing staff training to make deployment smoother: In addition to 

computer science and data experts that develop AI systems, there are many who 

increasingly use and work with AI systems in their regular activities. For example, 

staff in traffic management centers may be using AI tools to enhance sensing, 

predict congestion, or improve control measures. Even though these staff do not 

need to be experts in AI development, they could benefit from some forms of 

training. For example, in speaking to the ITS JPO’s AI for ITS Program about 

their ATCMTD deployment (G. Donaldson & M. Rosica, interview, June 2022), 
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the Delaware DOT (DelDOT) mentioned that their existing engineering and 

maintenance staff has readily adapted to technology changes with training and 

experience. Their latest addition of AI and ML capabilities will require additional 

appropriate levels of training. Overall, DelDOT emphasized that knowledge, 

skills, and abilities (as well as data management requirements) need to be 

defined to plan, design, construct, implement, operate, and maintain advanced 

systems, especially as all systems associated with DelDOT’s Integrated 

Transportation Management System (ITMS) are becoming more complex and 

sophisticated (e.g., increasing quantity and variety of detectors and data for 

machine vision). From the perspective of technologists developing and deploying 

AI systems, training of client staff is essential and cost effective. Training 

operators and users on the basics of AI systems (such as the need for consistent 

data formats) helps ensure AI-based systems can be operated and maintained 

smoothly. Other trainings can include data preparation, modeling, and quality 

assurance. For example, as mentioned in the Model Drift Section, an AI model 

may need to be trained with new data when the initial setting starts to drift away. 

Staff trainings not only improve the technical proficiency of personnel, they also 

can help build buy-in for AI-based systems (Vasudevan, Townsend, et al., 2022).  

• Conducting periodic education and training to keep up with advances in AI: 

As AI technology changes rapidly, continuous training ensures that staff keep up 

with advances in the field. In addition to computer and data scientists, domain 

experts or junior staff can also benefit from ongoing training in advances in AI. 

Addressing workforce needs will help maintain technological competitiveness 

and ensure that the skills acquired by the workforce remain relevant in the future 

(IEEE Advancing Technology for Humanity, 2019). The IEEE European Public 

Policy Initiative Position Statement article urged that government, business, and 

educational institutions share the responsibility for investment in education and 

training in order to increase the AI skilled workforce. 

• Investing in future workforce talent: Government could work with academia 

(i.e., K-12 as well as higher education), the general public, and the private sector 

to increase the future workforce capacity in AI for ITS. For example, coordination 

activities could take the form of internships, studio classes, workshops, and/or 

challenges, such as hackathons. 

2.12 Stakeholder Perception 

Table 14. Summary of the Stakeholder Perception Challenge and Potential 

Strategies to Address It 

Summary of Stakeholder Perception 

What is it? When stakeholders are skeptical or mistrustful of AI systems or 

have exaggerated expectations of AI systems’ capabilities 
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Summary of Stakeholder Perception 

Why does it 

matter for ITS? 

• If stakeholders lack a clear understanding of the capabilities of

AI, this can lead to skepticism and mistrust or to blind belief in

AI as a solution for all problems, both of which could impede

the successful implementation of AI.

• Due to perceived high costs and risk aversion, agencies may

prefer to deploy traditional ITS systems rather than AI-based

systems.

• Ethics, liability, and privacy issues could also affect stakeholder

perception of AI. Agencies may have to contend with these

institutional challenges when implementing AI solutions.

How can it be 

addressed? 

• Conducting stakeholder analysis to identify stakeholders and

their needs

• Building trustworthy and ethical AI systems

• Engaging with the user community early and often to gain buy-

in and understand stakeholder needs

• Demonstrating the value of AI to keep stakeholders on board

with the project

• Exchanging information with other deployers to share insights,

lessons learned, and preliminary results

• Ensuring leadership buy-in of AI techniques for initial and

continued support

• Setting stakeholder expectations, including on the

implementation timeline

• Promoting public understanding of AI to clarify what it is and

how it could play a role

Description of Challenge 

One of the biggest hurdles that AI faces today is lack of public trust and acceptance. 

Stakeholders’ views of AI for ITS could impede its adoption, successful implementation, 

or acceptance, due to risk aversion, exaggerated expectations, or mistrust. These and 

other factors contributing to stakeholder perception are summarized below.  

• Lack of trust in decisions: While AI techniques can improve data analysis and

support decision making, they are often seen as “black boxes.” Users’ inability to

articulate the rationale for a decision can affect their level of trust in AI (Phillips et

al., 2021). According to a 2018 Pew Research Center survey on “Public Attitudes

Toward Computer Algorithms” (Smith, Aaron, 2018), most Americans find it

unacceptable to use algorithms to make decisions with real-world consequences

for humans. Fifty eight percent (58%) of Americans feel that computer programs

will always reflect some level of human bias. Two-thirds of Americans (68%) find

the personal finance score algorithm unacceptable because this violates privacy.

Fifty-seven percent (57%) of Americans find automated resume screening
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unacceptable because of the notion that the human element is removed from 

important decisions. Another prominent concern mentioned is that “humans are 

complex, and these systems are incapable of capturing nuance,” especially when 

it comes to criminal risk scores. Additionally, a report from the British Computer 

Society (BCS) revealed that more than half of UK adults (53%) do not trust 

organizations that use algorithms to make decisions about them (Leprince-

Ringuet, Dephne, 2020). This mistrust or inability to explain or interpret decisions 

can be a major barrier to the adoption of AI. Please also see the Explainability 

Section for more information on this challenge. 

• Lack of understanding of AI capabilities: Due to a lack of AI knowledge, 

stakeholders may not have accurate expectations of the functionality and 

reliability of AI systems. According to recently conducted market research on AI 

for ITS (See Appendix A), AI product vendors have to provide detailed training to 

agency staff on the data preparation, analytic models, and quality assurance 

procedures to overcome their skepticism. While some stakeholders may be 

skeptical of AI, others may be overly enthusiastic about the capabilities of AI and 

view it as a solution for all problems. Neither blind faith nor skepticism of AI is 

helpful for its successful implementation. A blind believer may feel disillusioned if 

they do not fully understand the drawbacks of AI while a skeptic may miss out on 

AI’s benefits if they are not aware of the advantages of AI. Please also see the 

Talent/Workforce Availability Section for more information. 

• Fear of obsolescence and wasted investments: While agencies may be open 

to exploring AI solutions, they are often concerned with how quickly technology 

can become obsolete. Dynamism in the field of AI can contribute to agencies’ 

perception that investing in long-term AI solutions is undesirable for fear of 

wasting their investments (Vasudevan, Townsend, Schweikert, et al., 2020). 

• Fear of unethical decisions and liability issues: Ethics and liability concerns 

could also affect stakeholder perception of AI. According to the 2018 Pew 

Research Center survey (Smith, Aaron, 2018), the public is concerned about the 

fairness and acceptability of using computers for decision-making in situations 

with important real-world consequences, such as criminal risk assessment 

(56%), automated resume screening (57%), automated video analysis of job 

candidates (67%), and personal finance scoring (68%). Please see the Ethics 

and Equity, and Liability Sections for more information. 

• Fear of privacy loss: AI uses various data to train the system, including 

sensitive data in some cases. Stakeholders may have concerns about how their 

personal information may be used and/or leaked to a 3rd party for other purposes. 

For example, according to the 2018 Pew Research Center survey (Smith, Aaron, 

2018), privacy violation is a top concern mentioned by respondents, particularly 

for those who find personal finance scoring by algorithms unacceptable. Please 

see the Privacy Section for more information.  
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Implications for ITS 

Some of the ways in which stakeholder perception of AI/ML could come into play for ITS 

are summarized below. 

• Risk aversion: Agencies are often cautious when investing in untested or 

unproven technologies. Risk aversion is one of the primary reasons limiting an 

agency’s inclination to experiment or deploy un-proven AI solutions (Vasudevan, 

Townsend, Schweikert, et al., 2020). For example, an agency may be hesitant to 

deploy an AI-enabled cyberattack prediction system that has only been tested 

using a simulation model, even if shown to accurately predict cyberattacks since 

the AI-enabled solution has not been tested in a real-world environment.  

• Budget constraints: The cost of implementation of certain AI-enabled 

applications could prove to be significantly higher than the cost of a conventional 

system that already provides adequate performance. Due to limited resources, 

agencies are responsible for spending public funding responsibly and tend to 

avoid investing in innovative solutions that have not been tried before. Recent 

market research on AI for ITS (See Appendix A) has revealed that budget 

constraints and limited federal grant availability, particularly “short-term” funding, 

are the biggest barriers to widespread deployment of advanced safety systems; 

the need for funding exceeds availability. Additionally, many municipalities are 

often unaware of available funds or how to access them. These issues could limit 

or slow adoption. 

• Institutional challenges: ITS technologies are often publicly accessed systems, 

so agencies will need to contend with institutional challenges related to privacy 

issues (such as PII), ethical issues, liability issues and other policy issues when 

implementing AI solutions (Vasudevan, Townsend, Schweikert, et al., 2020). For 

example, liability may be an issue in a case where an AI algorithm that 

determines automated vehicle behaviors leads to a crash. In another example, 

an AI-based travel time prediction system may need to collect vehicle trajectories 

to calculate travel times or recommend routes, which could potentially impact 

privacy. Additionally, AI-based systems may not be permitted to use certain data 

for new use cases without permission from those involved. For example, if an 

agency decides to install new camera equipment into signal controller cabinets 

for a procured computer-vision based system, they may need to make the public 

aware that their images will be captured at those locations.  

Insights and Lessons Learned  

Some approaches to potentially address negative stakeholder perception of AI are 

summarized below. 
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• Conducting stakeholder analysis to identify stakeholders and their needs: 

Before pursuing AI, agencies could conduct stakeholder analysis to identify all 

stakeholder groups who may affect or be affected by the project and their needs. 

While conducting a stakeholder analysis is considered a best practice for many 

project types, it could be especially valuable for projects involving emerging 

technology, such as AI, that may include new or different stakeholder groups. For 

example, relevant stakeholders in transportation may include advocates for 

particular positions (e.g., safety, environment, modes, etc.), associations of 

companies (e.g., OEMs, construction), constituent groups (e.g., commuters, 

tourists), elected officials, government agencies, and labor unions (Steier, 2021). 

In addition to identifying all stakeholders and their needs, it could be helpful to 

assess their level of interest and influence. For example, some stakeholders may 

have high influence/power but low interest in the project and its specifics. 

Agencies may want to keep these stakeholders satisfied but may not need to 

manage them too closely or keep them informed of all project details. Conversely, 

some stakeholders may have high interest but low influence/power, and would 

therefore, appreciate being kept in the loop of project happenings (i.e., regular 

updates) (Steier, 2021).   

• Building trustworthy and ethical AI systems: For gaining trust, it is crucial for 

the AI system to consistently produce outputs that are reasonable, auditable, and 

explainable. This could start from making “data science a trusted profession – as 

trusted as the profession of doctor or lawyer,” suggested the director of policy at 

the British Computer Society (Leprince-Ringuet, Dephne, 2020). Documentation, 

visualizing results, and other insights and lessons learned from the Explainability, 

and Ethics and Equity Sections could be potential strategies in building 

trustworthy and ethical AI systems. 

• Engaging with the user community early and often: Kicking off a project idea 

by engaging with expected stakeholders can improve not only stakeholder 

perception and buy-in but also streamline the development process. For 

example, the Tennessee DOT (TDOT) as part of their ATCMTD deployment, 

started off the process by hearing from the TMC, TDOT, and others, which made 

them “highly focused to deploy the right tools in the right spot” (L. Smith et al., 

interview, April 2022). Community engagement is not a one-time event. Instead, 

building and connecting with the user community is an ongoing effort. In 

speaking to the ITS JPO’s AI for ITS Program about their ATCMTD deployment 

(M. Haselkorn et al., interview, April 2022), the Washington State DOT (WSDOT) 

emphasized the importance of regularly engaging with the user community in a 

highly agile and participatory process when developing their ML use cases as 

part of their ATCMTD deployment. From the beginning, they worked to “win over 

the hearts of minds” of the user community and bring everyone to the table to 

discuss options. Additionally, the Delaware DOT (DelDOT) in speaking to the ITS 

JPO’s AI for ITS Program about their ATCMTD deployment (G. Donaldson & M. 

Rosica, interview, June 2022), emphasized the importance of developing 
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relationships. For example, they have internal meetings every week with key user 

groups (e.g., state IT managers, DelDOT’s IT group) to discuss how things are 

working and what needs changed.  

• Demonstrating the value of AI: Deploying AI for the sake of deploying AI may 

not be the best strategy for winning over stakeholders. Instead, stakeholders will 

likely want to see how the AI deployment will address their needs. Once 

stakeholders initially buy-into the project concept with AI, the deployment will 

likely need to demonstrate the value of AI over time to keep them engaged. For 

example, in speaking to the ITS JPO’s AI for ITS Program about their ATCMTD 

deployment (M. Haselkorn et al., interview, April 2022), WSDOT emphasized the 

need for their AI/ML application to demonstrate value to keep users and 

stakeholders onboard with the project.  

• Exchanging information with other deployers: Providing opportunities for 

engagement across deployments could be a valuable way to assuage 

stakeholder hesitancies and allow AI deployers to learn from one another. Peer 

exchanges and cohorts (e.g., the Early Deployer ATCMTD Cohort) are two such 

outlets for engagement that the USDOT and other agencies have used to 

facilitate information sharing. In these informal settings, deployers can learn how 

others have implemented specific technologies, such as AI, as well as any 

challenges, lessons learned, and impacts they have seen. A benefit of this form 

of engagement is that deployers can share interim information about ongoing 

projects, which allows other deployers to learn and ask about the project more 

quickly than they would be able to otherwise (i.e., from waiting for a final report).  

• Ensuring leadership buy-in on AI techniques: Leadership buy-in is a critical 

component to implement AI techniques into ITS. Leadership could include 

federal, state, and local agency leaders, among other key stakeholders. In 

speaking to the ITS JPO’s AI for ITS Program (E. Kopinski et al., interview, April 

2022), staff from the Missouri DOT (MoDOT) emphasized the importance of 

educating leadership when considering deploying AI/ML. While some decision 

makers may expect AI to be a near-term panacea, others may think AI is still 100 

years away. Educating leaders on both the possibilities and potential challenges 

of AI could help set realistic expectations and foster buy-in. With leadership buy-

in, agencies would have stronger support to develop standards, provide 

resources, educate the workforce, address institutional challenges, and resolve 

policy issues.  

• Setting stakeholder expectations: According to the USDOT’s 2020 Plan for AI 

for ITS report (Vasudevan, Townsend, Schweikert, et al., 2020), there is a need 

to develop a convincing narrative to set expectations and motivate stakeholders 

(e.g., agencies and their partners, original equipment manufacturers [OEMs], 

vendors, and developers). This could include a discussion of the evolutionary 

deployment and expected impacts, beginning with cost-effective, near-term 
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deployments or prototype demonstrations that can evolve into complex and 

transformative long-term deployments. In speaking to the ITS JPO’s AI for ITS 

Program (T. Geara et al., interview, April 2022), the City of Detroit mentioned the 

need for knowledge transfer as a key lesson learned as part of their ATCMTD 

deployment, which includes AI. Understanding AI’s capabilities and constraints 

and being realistic in what it can and cannot do is important. Involved staff do not 

need to be experts but having some baseline knowledge is helpful.   

• Promoting public understanding of AI: The success of AI technology depends 

on the ease with which people use and adapt AI applications. Therefore, 

promoting an understanding of AI and fostering trust with the public is beneficial 

for its successful implementation (IEEE European Public Policy Initiative, 2017). 

In addition, public opinion related to trust, safety, privacy, employment, society, 

and the economy tends to influence public policy (IEEE Advancing Technology 

for Humanity, 2019). According to a 2021 Study Panel Report on AI by Stanford 

University (Littman, etc., 2021), the AI community could facilitate a clearer public 

understanding that reduces confusion between AI and other information 

technologies. For example, a taxonomy of AI could serve as a useful frame of 

reference. Additionally, according to the report, participatory engagement and 

conversation with the public are considered more effective outreach mechanisms 

than educating or talking to the public after the fact. Many organizations are 

developing more deliberative and participatory models of AI public engagement, 

such as blogs and forums (Littman, etc., 2021). Such efforts could help boost 

public interest in and democratic involvement with AI. 
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3 Key Takeaways 

The report summarized 12 challenges to AI adoption and implementation in ITS. The 

challenges and potential solutions were identified based on the AI for ITS Program’s 

research and market engagement efforts to date. Please see Table 1 in the Executive 

Summary for a complete list of these 12 challenges, and their corresponding 

implications for ITS, and insights and lessons learned. Overarching key takeaways are 

summarized below.  

• The twelve challenges for AI adoption and successful implementation are 

not unique to ITS. They are broad technical and institutional challenges that 

impact a wide variety of sectors. Many of the insights and lessons learned in this 

report are gleaned from other sectors and could potentially be applied to ITS.   

• There may be tradeoffs between addressing different challenges. For 

example, greater explainability could provide more information for malicious 

actors to manipulate, potentially breaching security and/or privacy. Adding 

robust, large scale data sources may boost AI performance but could be costly 

to store and implement.  

• Addressing these challenges is an ongoing exercise. These challenges are 

dynamic and, like AI itself, will evolve over time. For example, cybersecurity 

concerns today may look different than cybersecurity concerns next year as 

malicious actors find new ways to hack into systems. Additionally, stakeholder 

buy-in is important not only at the onset of a project but also throughout the 

project to support its continued success. The deployment of new AI techniques 

may require new staff expertise. Overall, challenges and risks are dynamic and 

addressing them is an ongoing exercise. 

• Maintaining a human-in-the-loop is helpful in identifying and mitigating 

these challenges. Ongoing human oversight of AI/ML applications in ITS can 

help in identifying and mitigating potential issues, particularly those that the 

machine may not catch and those that may require making tradeoffs in how they 

are addressed. Having both domain and AI/ML expertise on staff is useful for not 

only the initial implementation but for ongoing operations and maintenance of 

the system and its AI/ML applications.  
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APPENDIX A: AI for ITS Sources 

Sought Notice Summary of 

Responses 

The appendix provides an overview of the AI for ITS Sources Sought Notice (SSN), 

summarizes the SSN review methodology, and summarizes responses to the SSN. 

A.1 Overview of Sources Sought Notice 

The purpose of the Sources Sought Notice (SSN) was to solicit feedback from public 

sector agencies, industry, research laboratories, academia, and other stakeholders on 

“deployment-ready” applications that leverage AI to address ITS needs, specifically to 

improve the transportation system and users’ safety, mobility, equity, accessibility, 

productivity, efficiency, and environmental impacts. Deployment-ready AI-enabled ITS 

applications are those that have been successfully prototyped and validated to address 

specific ITS challenges and are sufficiently mature for integration into existing ITS 

operations within six to nine months. This includes data acquisition, processing, re-

training, testing, and validating the application, and integrating with existing ITS. 

However, USDOT recognizes that ongoing development, test, validation, and 

maintenance, are necessary after the application is initially deployed in the field to 

accommodate new and/or changing data sources, prevent performance degradation, 

ensure continued security and privacy. The DOT sought responses to a series of 

questions (listed in the SSN Appendix), to help shape potential investments towards 

pilot deployments of ITS applications that utilize AI. 

The AI for ITS SSN was issued on 30 July 2021 and closed on 10 September 2021. On 

12 August 2021, the ITS JPO AI for ITS Team held a webinar on the SSN. The deadline 

for questions on the SSN was 16 August 2021. The questions and answers on the SSN 

were posted on 23 August 2021. All SSN documents, including the SSN, the Appendix 

with questions, and the questions and answers can be found at SAM.gov. 

Although AI can power applications throughout the entire transportation system, the 

ITS-JPO is interested in existing capabilities in developing and deploying AI-enabled 

ITS applications that fall under the seven categories shown in Figure A-1 - 

Transportation Systems Management and Operations (TSMO), Asset Management and 

Roadway Construction and Maintenance, Commercial Vehicle and Freight Operations, 

Transit Operations and Management, Accessible Transportation, Emergency 

Management, and Traveler Decision Support Tools. 



Appendix A 

Joint Program Office 

U.S. Department of Transportation, Research and Innovative Technology Administration 

AI for ITS Challenges and Lessons Learned Report – Final |  92 

 

Figure A-1 AI for ITS Application Categories 

The potential for AI in ITS is both broad and substantial in these seven high-value 

categories ranging from ensuring safety, improving situational awareness and systems 

management, optimizing fleet operations, improving accessibility, and maximizing 

infrastructure investments through proactive asset management. AI-enabled ITS 

applications within these seven categories can be used to improve safety, mobility, 

accessibility, productivity, and efficiency and reduce climate change impacts. The SSN 

included a preliminary list of 31 “deployment-ready” AI for ITS applications that fall 

within the seven categories, recognizing the applications may not be comprehensive. 

The “AI for ITS Sources Sought Notice Appendix: Questions for Respondents” included 

nine questions that sought to gain insights from operational testing and early 

deployments of AI for ITS as well as information on existing technical capabilities of 

public, private, and academic sectors in developing and deploying AI-enabled ITS 

applications within the seven categories. ITS JPO also sought to gather similar 

information and insights on additional suitably mature applications not covered in the 

preliminary list of 31 “deployment-ready” AI for ITS applications in the SSN, that 

leverage the data collection, processing, and analysis potential of AI to enable safer, 

more equitable, more efficient, and more reliable surface transportation system 

planning, operation, and maintenance, particularly among public-sector transportation 

agencies. 

The first question in the SSN Appendix asks respondents whether they agree with the 

characterization of the maturity of the 31 AI-enabled applications listed in the SSN. The 

second question asks if the respondent is aware of deployment-ready AI-enabled ITS 

applications that are not covered in the SSN. The third question asks if the respondent 

has leveraged AI techniques for data collection, processing, or analysis to address ITS 

needs. The third question includes 14 sub questions asking for more detail about the 

problem addressed, deployment in the field, the application concept, the main 

users/beneficiaries, the system or application interpretability, transparency and ethics 
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considerations, collaboration, data requirements, cybersecurity, benefits and evaluation 

metrics, cost estimates, challenges and lessons learned, scaling, and ongoing 

operations and maintenance. The fourth question asks if the respondent is aware of 

proven AI-enabled applications from other domains that could be rapidly adapted and 

integrated within the ITS ecosystem. The fifth question asks about interoperability 

across vendors and locations. The sixth question asks whether AI operations in 

transportation are trustworthy and ethical. The seventh question asks about which ITS 

challenges might benefit most from targeted investments. The eighth question asks 

respondents to identify the top three roles for USDOT to support agencies in leveraging 

AI. Finally, the ninth question asks about the future of AI for ITS. 

A.2 Summary of Responses

Out of the total number of SSN responses received, 50% were from small businesses, 

38% were from large businesses, 8% from academic centers, and 4% from federally 

funded research and development centers (FFRDC). Among these, 13% were identified 

as minority-owned businesses. The most common domain by far is technology (67%), 

with transportation (25%) as a distant second, followed by energy (4%). 

A.2.1 Summary of Responses to Each Question in the SSN

Question 1: Do you generally agree with the characterization of the maturity of the AI-enabled 

applications listed in Table 2 of the SSN? To support the reasoning behind your answer, can 

you provide references and/or evidence? 

Response: Majority of the respondents generally agreed with the characterization of 

the maturity of the AI-enabled applications in Table 2 of the SSN. 

Applications that were noted to be of lower maturity than what was indicated in Table 2 

of the SSN were Proactive Incident Management and AI for Multimodal Trip Planning 

that accounted for emissions and traveler preferences. One respondent noted that AI 

for data fusion in the TMC, AI for Work Zone Safety and Information Dissemination, 

Comprehensive traffic modeling using prediction, AI for Weather Prediction and 

Response, AI for road weather management, and Proactive Incident Management 

specifically for transit event logging were of higher maturity than what was indicated in 

Table 2. These appear to be ones that the entity had developed in their lab. Reviewers 

found the justifications provided by the respondents for the deviations in maturity 

characterizations to be reasonable. 

One of the respondents mentioned that even though majority of the applications may be 

technologically mature, institutional barriers (e.g., existing agency practices, cross-

agency collaboration, public-private collaboration) may prevent or hinder their adoption. 
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Other barriers include lack of ground truth data for validation, data processing and 

computing bottlenecks, interoperability, and independent validation of tool scalability. 

Another respondent indicated that some of the applications listed in Table 2 needed to 

“go through a rigorous evaluation process in terms of accuracy and effectiveness” prior 

to deployment in the field. 

Question 2: Are you aware of deployment-ready AI-enabled ITS applications that are not 

covered in Table 2 of the SSN? If so, please provide a summary of the application concept, its 

categorization according to Table 1 of the SSN, and supporting references and/or evidence. 

 

Response: Nearly half of the respondents provided AI-enabled ITS applications that 

were deployment-ready but not covered in Table 2 of the SSN. Based on the 

information provided, reviewers were generally in agreement with the respondents’ 

assessments. 

Most of the applications fell under the TSMO category. Examples of applications that 

fell under the TSMO category include AI-enabled applications for: data fusion; multi-

modal people movement analytics; congestion causality analytics; traffic predictions; 

dynamic pricing; vehicle re-identification; real-time driver assistance using on-board 

barcode reader and edge computing; transportation planning and disaster recovery 

using large volumes of GIS data; Backoffice automation; predictive energy analytics; 

environmental sustainability (e.g., air quality-based vehicle routing); customer support 

(e.g., Conversational AI, agent decision support, agent training); and trespass detection 

and prediction along railroad right-of-way. 

Examples of applications that fell under Commercial Vehicle and Freight Operations 

category include port analytics; automated vehicle inspections; driver safety scoring; 

and container expected time of arrival. 

Examples of applications that fell under Traveler Decision Support Tools category 

include AI-enabled applications for on-demand transportation services (e.g., macro-

transit); occupancy detection and notification; and real-time parking availability, location, 

and fares. 

Examples of applications that fell under Transit category include AI-enabled applications 

for Transit Event Logging System (TELS), and on-demand transportation services. 

An example of an application that fell under Remote Sensing category includes the use 

of AI and computer vision to analyze satellite, balloon, and mobile geolocation data, to 

study a range of human activities to provide strategic insights. 
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Question 3a: Have you leveraged AI techniques for data collection, processing, integration, or 

analysis to address ITS needs? What was the problem that was addressed (e.g., crash / risk 

identification; recurrent and non-recurrent congestion)? 

 

Response: Most respondents have leveraged AI techniques to address ITS needs. 

Most AI-enabled applications proposed by the respondents addressed the following 

problems: crash prevention and risk identification, recurrent and non-recurrent 

congestion, traffic prediction and operations, emergency management, and large-scale 

asset management. Two applications are freight-related applications focusing on port 

cargo prediction and freight route optimization. One application focuses on flight delay 

prediction. Note that most applications proposed by the respondents could help address 

problems in the Administration and USDOT priority areas as shown in Figure A-2, with 

Safety and Infrastructure as the two most often cited by reviewers. Fewer reviewers 

cited applications as being able to help address challenges in Equity, which could 

indicate a gap. 

 

Figure A-2 Percentage of Respondents Addressing Problems in 

Administration/USDOT Priority Areas 

Question 3b: Has this been implemented or deployed in the field? If so, where? Is the 

implementation/deployment still ongoing? 

 

Response: According to the rating of the technology maturity of the proposed AI-

enabled applications, most entities proposed applications that have been deployed in 

the field. Some entities proposed applications that have been deployed in more than 

one location and these applications have a TRL of 7 or higher. For more detailed 

information on the application maturity, please go to Section A.2.2. 
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Question 3c: Please provide a summary of the AI-enabled application concept. Did you make 

use of edge computing? Please also include its categorization according to Table 1 of the 

SSN and the AI techniques (e.g., machine learning, natural language processing, object 

recognition) that were applied. 

Response: More than half of the respondents made use of edge computing in their AI-

enabled applications. They leveraged AI techniques such as, deep learning, neural 

networks, reinforcement learning, computer vision, convolutional neural network (CNN), 

etc., to address ITS needs. Figure A-3 plots the number of applications in each 

application category. Most applications proposed by the respondents fall into the TSMO 

category. Note that one application may fall into multiple application categories. For 

example, road weather prediction may fall under both TSMO and Traveler Decision 

Support Tools since the respondent’s application can help a TMC operator manage the 

transportation system as well as provide travelers with situational awareness of the 

road weather conditions. 

Figure A-3 Number of AI-Enabled Applications by Category 

Question 3d: Who were the primary users and beneficiaries of this AI-enabled application 

(e.g., Infrastructure Owner Operators, travelers, TMC staff, etc.)? 

Response: The primary users and beneficiaries of the AI-enabled applications 

proposed by the respondents are the Infrastructure Owner Operators (IOO), followed by 

travelers, pedestrians, and micro-mobility users (see Figure A-4). Most AI-enabled 

applications developed by the respondents fall into the TSMO category. Therefore, most 

respondents said they collaborate with the public sectors and the primary users and 

beneficiaries are IOO. 
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Figure A-4 Primary Users and Beneficiaries of AI-Enabled Applications 

Question 3e: Are decisions made by the AI-enabled application easily interpretable by the 

primary users and beneficiaries? 

Response: Most of the entities failed to provide an adequate response on the 

interpretability of their AI-enabled applications. Those who did, mentioned that visual 

display (e.g., through dashboards, satellite images, Geographic Information System 

[GIS] maps) of results enables easy interpretation. It was noted that some applications 

are simple to understand because the outputs are traffic engineering performance 

measures. Some entities touched on the interpretability of the reasoning behind the 

decisions. It was mentioned that prior to system deployment, all impacts are explained 

and agreed to by the traffic partner agencies and transit operators. An initial training 

was conducted for the users of an application to allow for independent operation and 

analysis of results. It was noted that an AI technique (Decision Trees) is “naturally 

explainable” and that in addition uses “plain language text to explain the AI-based 

decisions.” It appears that few entities have a clear strategy in place for developing 

interpretable AI models. 

Question 3f: How transparent is the system to the public? Is there a strategy in place for 

cultivating trust in the AI-enabled application? What legal and ethical considerations have 

been made regarding system transparency? 

Response: Majority of the respondents demonstrated ability to make their systems 

transparent, while taking into consideration the legal and ethical implications. However, 

they do not appear to have a systematic approach for cultivating trust among 

stakeholders. 
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Some mechanisms that the respondents used for making their systems transparent, 

while protecting privacy include: sharing sensitive information only with agencies and 

not with the public; removing PII from data and not sharing data with unauthorized 

users; not using or recording any satellite imagery data that reveal identities of vehicles 

and pedestrians; blurring images to preserve privacy; securely archiving video footage; 

immediately reducing video imaging data to positional information and discarding raw 

data where personal or vehicle identification can be done; receiving consent from 

drivers prior to using their information; and informing the public about the technology 

being used and why. One respondent noted that they had an ethics plan. 

Question 3g: Did you collaborate with any organizations or agencies for developing and/or 

implementing the AI-enabled application? If so, who (e.g., academia, private sector) did you 

collaborate with? What type of collaboration did you have (e.g., signed memorandum of 

agreement to share resources, informal collaboration)? 

Response: Most respondents collaborated with public sector agencies for developing 

and implementing AI-enabled applications due to the funding and deployment effort 

(see Figure A-5). Private sectors are the second frequently mentioned sectors for 

product development effort, followed by academia for research purpose. Most AI-

enabled applications developed by the respondents fall into the TSMO category. 

Therefore, similar to Question 3d, most respondents said they collaborate with the 

public sectors. 

Figure A-5 Sectors Frequently Collaborated with for Developing AI-Enabled ITS 

Applications 
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Question 3h: What are the data requirements (i.e., type, quantity, quality, frequency, and 

latency of data) for the application? Are the data readily accessible to you? Did you use or 

create any proprietary data? Did you have an established data sharing agreement with other 

players? Do sufficient, affordable data sources exist to effectively operate AI for ITS? Did you 

assess for data imbalance? Did you check for possible bias in the data? Did you need labeled 

data? 

Response: Majority of the respondents used proprietary data, which were either 

purchased from agencies, for whom the applications were being developed, or provided 

by the agencies at no cost through data sharing agreements. Some respondents used 

publicly available data (e.g., state DOT data, General Transit Feed Specification [GTFS] 

data) or data from simulation models. Given below are some of the key takeaways: 

• Public Domain Data: Public domain data (specifically, imagery data) may

suffer from a lack of quality control. One of the respondents noted that public

domain imagery data are poorly annotated and suffer from data

inconsistencies, and so they had to use proprietary data.

• Labeled Data: Automated tools/methods can be used to augment hand-

labeling for training data. One of the respondents was able to increase the

number of images by ten-fold by using a combination of hand-labeling and

automated tools/methods, compared to just hand-labeling.

• Data Accuracy/Completeness: Street and road data, and public transit

network data are widely available with different levels of completeness,

accuracy, and granularity, but enriched data come at a cost. One of the

respondents noted that enriched data, such as driving directions come at

cost; According to the respondent, the hardest data to acquire are non-

geographical datasets like fares, emissions, or public preferences.

• Data Latency: Use of on-demand data can increase latency if the data are

coming from a data provider. One of the respondents noted that if on-

demand data are used, it can increase the lag time for processing results

since the data has to come from the data provider and is not situated in the

developer's servers (on-prem or cloud)

• Bias/False Positives: Rigorous and thoughtful feature engineering is crucial

for avoiding false positives, especially in near-incident events. One of the

respondents extracted more than 25 features from computer vision

metadata, and subsequent projects also benefited from this process, which

is a bonus for most ML-related efforts. Another respondent noted that

“balancing the data against bias and noise is a continuous process,” needing

“regular, independent, and automated tests.”
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Question 3i: Have you conducted security analysis of your AI-enabled ITS application (e.g., 

Confidentiality, Integrity, Availability (CIA))? Are there any medium/high security risks 

associated with your application? If yes, what are these risks? What Cybersecurity concerns 

must be addressed for an operational AI ITS system? What Cybersecurity concerns must be 

addressed for ensuring personal security? 

Response: Majority of the respondents either did not respond to the question 

specifically or indicated that they have not conducted a security analysis of their AI-

enabled ITS application. Those who responded, mentioned a few best practices that 

their organizations follow. These include: (i) minimizing data generation, transmission, 

and access by different people, (ii) transmission of only anonymized and encrypted data 

to the cloud; (iii) preserving privacy by avoiding face recognition technologies or blurring 

faces; (iv) processing data on the edge and confirming security patching on edge 

devices; (v) using internal Wide Area Network for the ITS infrastructure; (vi) frequent 

penetration testing; (vii) following Open Web Application Security Project (OWASP) 

development standard or security best practices of commercial services (e.g., Google 

Cloud, Amazon Web Services; and (viii) using multi-layered cybersecurity (e.g., VPNs, 

firewalls, encryption, etc.). 

Some of the respondents indicated that they recognize cybersecurity to be a top 

concern but did not discuss the specific processes and procedures in place. 

Loss of PII was identified as the main cybersecurity concern. Data poisoning was also 

mentioned as a threat. Data poisoning is the act of tampering with the input data to 

influence the output. system. 

Question 3j: Have you measured the benefits? If yes, what improvements did you see? What 

evaluation metrics were used and why? Do sufficient, affordable data exist for measuring the 

performance of your AI-enabled system? Did leveraging AI techniques help address the 

problem? How did you benchmark the performance of your system? 

Response: Nearly half of the respondents have evaluated their systems to measure 

benefits, including receiving qualitative feedback from clients (e.g., AI solution is faster, 

more accurate, or less expensive). 

Some benefits reported by the respondents include, improved application performance, 

decreased congestion, improved speed and accuracy of incident detection, reduced 

wrong-way related incidents, improved detection of lane violations, improved bus speed 

and on-time performance, reduced hard braking by trucks due to queue warning at work 

zones, increased reliability and reduced breakdowns of fleet vehicles, increased profit 

and time savings to freight agencies, improved access to systems, improved response 

time and reduced human error due to automated actions, rapid pavement assessment 

(50% reduction in parts and labor cost), and consolidated workflow. 
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The respondents reported the use of the following evaluation metrics: precision, recall, 

F1 score, receiver operating characteristic (ROC), area under the curve (AUC), and 

mean average percentage error (MAPE). One respondent noted that in addition to 

industry performance metrics for ML models, metrics specific to the function of the 

system should also be considered. However, no further information on examples of 

such metrics was provided. 

Most of the respondents either did not respond to the question or indicated that they 

had not evaluated their systems to measure the benefits. A few of the respondents have 

tested their systems, prior to deployment, and noted improved accuracy. 

Question 3k: What are the rough order-of-magnitude cost estimates for the AI-enabled 

application (including the cost of developing and running the AI functionality as well as cross-

cutting costs such as data, sensors, hardware, etc.)? 

Response: A rough order of magnitude cost estimates were provided for respondent 
applications, which are summarized below: 

• For incident detection, software development and deployment cost for an

entire state-wide sensor network is approximately $5M. The cost of sensor

deployment is dependent on the coverage area and number of sensors.

• For wrong-way detections, the cost is $1M per year.

• For traffic volume estimation at a single intersection, the cost is

approximately $3M-$5M for development, testing, hardware procurement

and installation, and resources to monitor, update, and report on system

performance for five years.

• For vehicle tracking, non-recurring costs are approximately $1.2M; each

intersection will cost an additional $25,000.

• For object detection/geolocation, which is designed to run in a cloud

environment, the monthly compute costs start at $10,000/month and grow

based on data storage and compute requests.

• For pavement assessment, the cost is approximately $100/mile, but there

are other client specific costs, which were not reported.

• For predictive asset maintenance, the ongoing cost is between $20 and $50

per vehicle per month, with a one-time $400 hardware setup fee.
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• For machine vision traffic monitoring, software development cost is in the

order of $2M-3M. Hardware and deployment costs are dependent on the

density of the camera network and the connectivity.

• For port cargo predictions, the minimum cost is $1.2M.

• For freight route optimization, there is a one-time cost of $300,000 to

$500,000, and an annual cost of $50,000.

A majority of respondents either provided inadequate (e.g., $0 to $10M) or no response. 

Question 3l: What challenges or issues (e.g., institutional, legal, technical, operational, etc.) 

did you face while implementing the AI-enabled application? What are key lessons learned? 

Response: The respondents noted a series of technical, and institutional challenges, 

including: 

• Heterogeneity of data format, frequency, and quality

• Inadequate environment and lighting conditions, for computer vision-related

applications

• Data availability, data sharing, communications, and cooperation between

agencies and jurisdictions

• Lack of ground truth data

• Real-time processing of large amounts of data from edge devices

• Integrating the various layers of technology for the first time

• Software and hardware incompatibilities

• Keeping system up to date

• Vetting root cause assumptions and identifying true problems (as the client

may not know)

• Selection of relevant features for building ML models (helps to leverage

subject matter experts)

• Communication between technical and non-technical groups

• Lack of best practices
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• Insufficient information on benefits of applications

• Reluctance among technicians to fully adopt any new technology; difficulty

getting buy-in from prospective users

• Skepticism among customers when AI model outperformed expectations,

due to lack of familiarity with AI capabilities

• Difficulty with developing contract vehicles for local governments and

developing tools for larger organizations

• Lack of funding

Key lessons learned, as reported by the respondents, include the following: 

• Security, privacy, fairness, and the associated legal framework to codify and

represent those aspects must be central to AI-related projects.

• Ensure metadata is available, and confirm timestamp (intervals, frame rate)

on data from multiple sources are identical before data fusion.Re-configure

parameters after installation.

• Communications technologies, edge computing infrastructure, virtualization

technologies, and sensors need to be integrated and require automation

capabilities to respond to demand in real time.

• Considering the existing IT challenges states/localities face now, moving to

more complex and distributed approaches will be a challenge technically

and institutionally.

• Demonstrate benefits to encourage adoption of any new technology.

• Develop best practice training materials prior to deployment, based on

experiences gained throughout the process.

• Train operators/users on the basics of AI systems, such as the need for

consistent data formats.

• Educate clients about details of the AI pipeline, including data preparation,

modeling, and quality assurance, to help build buy in.

• Conduct research and gain an understanding of client data and operations

to find the real problem(s) before diving in. Work with domain experts to

ensure the technical solution solves the business problems.

• Focus on continuously improving the AI models.
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• Focus on areas of strengths or expertise (e.g., develop ultra-efficient AI 

software at the edge), and leverage deployment partners to scale the 

solutions. 

Question 3m: What challenges or issues do you foresee if the application were to be applied 

at a larger scale? 

  

Response: Key challenges to deploying AI-enabled solutions at scale, as noted by the 

respondents, include: 

• Logistical maintenance of the hardware and software 

• Lack of sufficient computational resources, such as GPU and memory 

• Ability to handle the vast amounts of data ingested when scaled 

• Maintaining data integrity, as unforeseen data issues and irregularities may 

be introduced at scale, requiring enhancements to data quality control 

processes 

• Cybersecurity 

• Deploying sufficient cameras, to match road network density, for computer-

vision related applications 

• Interoperability and integration, as standards frameworks are not mature 

enough 

• System adoption, as there may be policy changes within the client 

organization 

• Unifying the knowledge learned across multiple deployments while 

maintaining cybersecurity and privacy 

• Limited professional and agency capacity to implement and monitor AI-

based systems 

• Budget allocation and federal grant availability, for widespread deployment 

of advanced safety systems, as the need greatly exceeds available funding 

• Lack of awareness, especially among municipalities, of available funds or 

methods to access them 
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Question 3n: How is the AI-enabled application maintained? Can it incorporate new data? Can 

it respond to new conditions? 

Response: Majority of the respondents indicated that they periodically updated their 

hardware and software, including incorporating new data. Given below are some best 

practices noted by the respondents for AI-enabled system maintenance: 

• Regular monitoring of model performance, especially during deployments;

significant deviations possibly due to new data/conditions can lead to model

degradation

• Constant recording of new data (e.g., vehicle data, signal data) for

continuous re-training and refinement of models and improved performance

• Continuous monitoring of data to maintain sufficient quality of data

• Periodic calibration and validation of sensor data, camera views, and other

data

• Periodic back up of database

• Calibrate application to each site (even if previously deployed elsewhere)

• Consider built-in health monitoring feature to track sensor’s condition for

easy maintenance

• Continuous refinement of AI models (e.g., using regularization techniques for

model generalization)

Question 4: Are you aware of proven AI-enabled applications from other domains that can be 

rapidly adapted and integrated within the ITS ecosystem? If so, can the AI-enabled 

application, from another domain, be deployed within the ITS ecosystem in 12 months? 

Response: According to the respondents, examples of AI-enabled applications from 

other domains that can be rapidly adapted and integrated within the ITS ecosystem, 

include: 

• Computer vision techniques from the medical domain (e.g., medical

imaging)
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• AI/ML-based packet routing in the communications domain could be applied 

to a transportation network for re-routing traffic due to non-recurrent 

congestion 

• Reinforcement learning for optimal control could be applied to traffic signal 

control. 

• Data processing and modeling technologies for energy efficiency could 

conceptually be used for vehicle routing 

• Fraudulent transaction detection could be applied wherever payments are 

accepted (e.g., train, bus, or tollway) 

• Risk management applications and social engagement applications 

• Application for extracting, transforming, and loading acquisition data, could 

be useful for state and local agencies 

A few respondents noted that while there are proven applications in other domains, it is 

difficult to estimate whether these applications can be rapidly deployed in the ITS 

ecosystem within 12 months due to the complexity of implementation. One respondent 

noted that while AI image processing systems deployed in autonomous automobiles, 

smart systems in space vehicle design (e.g., communication, navigation), and AI 

systems integrated into jet aircraft for safety can all be integrated into the ITS 

ecosystem, the feasibility of rapidly deploying these applications for ITS is unknown 

since the data or sensor requirements are unknown. 

Question 5: Are multi-vendor AI for ITS solutions for the same or different transportation 

operations interoperable within a single location or across locations regionally or nationally? 

  

Response: Majority of the respondents did not provide a clear response to the 

question. A few seemed to confuse interoperability with interpretability. Others 

discussed interoperability more generally, rather than for their application. One 

respondent noted that for interoperability across vendors, common standard for data 

formats (input and output) is needed. For interoperability across locations, the 

interoperability will also depend on the system design and software architecture to 

enable transferability to other regions. This requires significant calibration of the 

application to each site. Another respondent noted that standards frameworks and 

protocols are not yet mature enough to allow seamless integration of applications 

between multiple vendors. The standards and policies are not yet mature enough for 

allowing interoperability across locations. 

A few respondents specifically mentioned that their systems were interoperable across 

locations. Methods used by these respondents include the use of open architecture for 
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maximum flexibility; use of a containerized solution; use of industry-wide standard 

formats; and use of open platforms with open data formats. 

Question 6: Are AI operations in transportation trustworthy and ethical? How are you 

determining them to be trustworthy and ethical? 

Response: Majority of the respondents recognize the need for building trustworthy and 

ethical AI systems. As one respondent noted, for gaining trust, it is critical for the AI 

system to consistently produce output that system’s operators consider reasonable. 

Conversely, a single error could “foul that trust for a long time.” For ethical operation of 

AI, the respondent noted that the AI decisions should minimize bias and be fair, 

transparent, responsible, and interpretable. Example best practices employed by 

respondents for trustworthy and ethical AI include: 

• Operate within a data governance structure that is ethical, and constantly

test for bias

• Conduct regular human verification for quality control

• Provide a mechanism to request proof upon demand (e.g., a picture that

was used to make an AI decision so a person can confirm upon request)

• Ensure the system performs well for all people regardless of gender,

ethnicity, etc. (minimize bias and act without prejudice)

• Test system in a controlled environment to gain system operators’ trust

• Ensure that the traffic partner agencies remain owners of the data to build

trust

• Ensure results are auditable and explainable, and are limited to actions for

only their designed purpose

• Build systems that adhere to federal, state, and local requirements, policies,

standards, regulations, and laws, and check for compliance

• Constantly monitor ethical standards as these do not remain fixed and

transform in response to evolving situations (e.g., what was acceptable 10

years ago, may no longer be considered ethical)

• Use a committee of experts or the organization’s ethics review board to

evaluate work, including bias assessment and mitigation, model

interpretability, governance, and model lineage
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Question 7: What ITS challenges might benefit most from targeted investments by DOT 

through pilot deployments of applications leveraging AI? 

Response: According to the respondents, challenge areas that would benefit the most 

from targeted DOT investments include: 

• Safety: Reduce fatalities; Stop-collision prevention; emergency vehicle

preemption; roadway worker and fleet death reductions; early incident

detection and confirmation; automated incident response plan generation

and implementation; safety-affirmative intersection messaging; and

pedestrian detection

• Mobility: Reduce congestion; improve traffic flow; removal of queue buildups;

promote high occupancy vehicle (HOV) lane usage; enforce HOV and

Express Lane usage; transit signal priority; freight mobility (optimize load

and truck movements); real-time signal optimization; traffic signal

coordination; and comprehensive real-time traffic modeling and prediction

• Accessibility: Optimize curb usage; and maximize mixed-use (cars, trucks,

pedestrians, cyclists, buses, and ridesharing operators) accessibility of the

curb at busy intersections

• Environment: Reduce pollution

• Efficiency: Handle large volumes of AV, CV, and CAV data to support

infrastructure and TSMO operations; explore alternative data sources; and

data fusion from multiple real-time data sources

• Infrastructure: Predictive asset management; standardized assessment of

pavement and other assets

• Funding: Direct award of funds to municipalities' emergency services

Question 8: What, in your opinion, are the top three roles for DOT to support agencies in 

leveraging AI for safer, equitable, more accessible, and more efficient operations and 

management of multimodal transportation systems? Please select from the choices below and 

provide reasoning. 

a. Focus predominantly on mature (i.e., having a maturity rating of 6 and higher on the

Technology Readiness Level (TRL) scale1) AI-enabled applications and how they can

support ITS.

b. Develop labeled data and other resources.
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c. Conduct advanced research and testing of AI-enabled applications.

d. Conduct prototype testing/demonstrations of AI-enabled applications.

e. Develop standards to ensure that data can be easily accessed and shared for execution

of AI-enabled ITS applications.

f.  Resolve AI-related policy issues (e.g., data governance and data sharing policies).

g. Evaluate AI-enabled ITS deployments.

h. Other.

Response: According to the respondents, the top three USDOT roles should be to 

resolve AI-related policy issues, develop standards to ensure that data can be easily 

accessed and shared for execution of AI-enabled ITS applications, and conduct 

prototype testing/demonstrations of AI-enabled applications. Focusing on predominantly 

mature applications and developing labeled data and other resources were other top 

roles selected by the respondents. One of the respondents noted that a critical 

roadblock to successful AI deployments is the lack of guidelines for data sharing and 

governance, which cannot be resolved by individual agencies and companies. Entities 

tend not to save data, let alone share it. Another respondent noted that availability of 

labeled data will result in advanced AI-enabled ITS applications by “attracting 

researchers from other domains to conduct research and development of ITS 

applications,” and “giving researchers a common set of data to benchmark their AI 

algorithms.” A respondent noted that agencies are less likely to deploy AI-enabled 

solutions if the technology has not been tested by peers. According to the respondent, 

the “USDOT can accelerate the development of AI for ITS solutions if it can effectively 

establish the ground rules for ownership and exchange of ITS collected data, set the 

protocol for the secure exchange of data, provide education and assurances to 

agencies about cyber security risks, and fund AI for ITS demonstration projects that 

agencies can reference.” 

Question 9: Where do you see AI headed in ITS and why? What challenges do you foresee? 

Response: The respondents see a wide range of possibilities for AI in ITS in the future. 

These include: 

• more autonomous, electric, and shared vehicle services (e.g., “moving a

package from an autonomous aircraft via a robot to an autonomous delivery

van to an unpiloted drone to the doorstep without any human interaction”)



Appendix A

Joint Program Office 

U.S. Department of Transportation, Research and Innovative Technology Administration 

AI for ITS Challenges and Lessons Learned Report – Final | 110 

•  incorporation of physical dynamics into the AI models (e.g., physics

informed neural networks (PINN))

• introduction of the digital twin concept to ITS

• application of deep reinforcement learning in traffic modeling and simulation

• limiting or removing the need for ML for real-time decisions, significantly

improving ML, exploring generative models to allow ITS to have a “digital

imagination” to allow “autonomous systems to not only adapt to a dynamic

environment, but to anticipate a future unforeseen (and therefore untrained

environmental factors) far beforehand”

• “a flexible enterprise AI platform that fits well into a government auditable

approach”

According to the respondents, key challenges to the future of AI in ITS include: 

• defining what is good in terms of metrics and outcomes

• lack of resources, including labeled and clean data, computation power,

hardware

• lack of capability to integrate multiple platforms and fuse data from multiple

sources with varying formats

• inability to create labeled data

• lack of ground rules for ownership and secure exchange of data

• lack of technological interoperability

• lack of standards to evaluate trustworthiness of AI applications

• deploying pilots in a disjointed or siloed manner, requiring expensive and

rare talent to develop and maintain inhouse systems

• lack of workforce and expertise in AI, specifically in the public sector, to

understand strengths, weaknesses, and risks (including cyber security

risks), and recognize unrealistic vendor claims

• skeptical or apathetic attitude towards change and new technologies,

requiring “technology stewards” to champion the new systems and provide

support throughout the process of adoption

• lack of federal funding to support agencies for development and adoption
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• potential proliferation of unethical AI systems

A.2.2 Summary of Applications Technology Readiness Level

Based on the information the respondents provided for their AI-enabled applications in 

response to Question 3, the reviewers rated the application TRL based on the FHWA 

definition (FHWA, 2017). Reviewers independently came to their assessment of the 

TRL of a respondent’s application through a review of the evidence presented in the 

response. For example, if an application was successfully deployed in an operational 

environment and proven to be beneficial, the application was rated as “8 – proven in 

operational environments.” If the application had been used in multiple locations with 

some customized features to meet the needs of different locations, it was rated as “9 – 

refined and adopted.” It should be noted that a TRL of 8, “proven in operational 

environment” does not necessarily mean that the AI application performs better than 

traditional solutions, just that the service/product has been shown to work in an 

operational environment. Figure A-6 shows the number of the applications, provided by 

the respondents, by TRL. There is a total of 38 applications identified by the reviewers. 

Out of the 38 applications, four applications are at the prototype demonstration level, 12 

applications have been demonstrated in operational environments, and 16 applications 

have been deployed and proven in operational environments. None of the applications 

were identified to be at the refined and adopted level (i.e., TRL of 9). 

Figure A-6 Distribution of TRLs of Respondent Applications 
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A.2.3 Key Findings from Review of Responses

Key findings from the SSN responses review are summarized below: 

• USDOT received a fair number of responses. The respondents provided a

total of 38 AI-enabled applications. In some instances, only marketing

materials were provided, which did not show any specific capabilities or

previous project examples. Both large business entities and small business

entities demonstrate the ability to deploy AI-enabled application for ITS.

• The respondents confirmed that USDOT accurately captured the

characterization of the maturity of AI-enabled applications from the previous

research.

• Most applications (32 out of 38) developed by the respondents are mature:

prototype demonstrated (4), demonstrated in operational environments (12)

and deployed and proven in operational environments (16).

• Most AI-enabled applications developed by the respondents fall into the

TSMO category. Therefore, most respondents said they collaborate with the

public sectors and the primary users and beneficiaries are IOOs.

• Many respondents made use of a variety open-source tools and packages

for ML model development.

• A few respondents indicated that they did not conduct security analysis for

their AI-enabled applications, but they did follow their organization’s best

practices, such as minimizing data generation, transmission, and access by

different people, and ensuring transmission of only anonymized and

encrypted data to the cloud.

• The respondents indicated that the top three USDOT roles are resolve AI-

related policy issues (e.g., data governance and data sharing policies,

ethical AI), develop standards to ensure that data can be easily accessed

and shared for execution of AI-enabled ITS applications, and conduct

prototype testing/demonstrations of AI-enabled applications.
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